

Chapter 4 Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Divide-and-Conquer

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank results.

Problems become easier once sorted.

Find the median.

Find the closest pair.

Binary search in a

database.

Identify statistical

outliers.

Find duplicates in a mailing

list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of

particles.

Book recommendations on

Amazon.

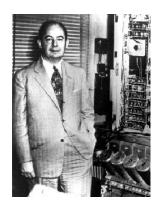
Load balancing on a parallel computer.

. . .

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.



Jon von Neumann (1945)

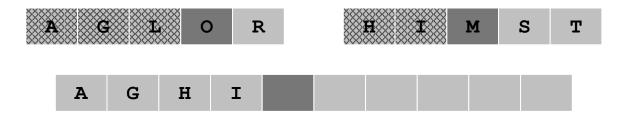
	A	L	G	0	R	I	T	Н	M	S			
A	L	G	; C	R			I	T	Н	M	S	divide	O(1)
A	G	·	. C) R			н	I	М	S	T	sort	2T(n/2)
	A	G	Н	I	L	М	0	R	S	T	ı	merge	O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- . Use temporary array.



Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

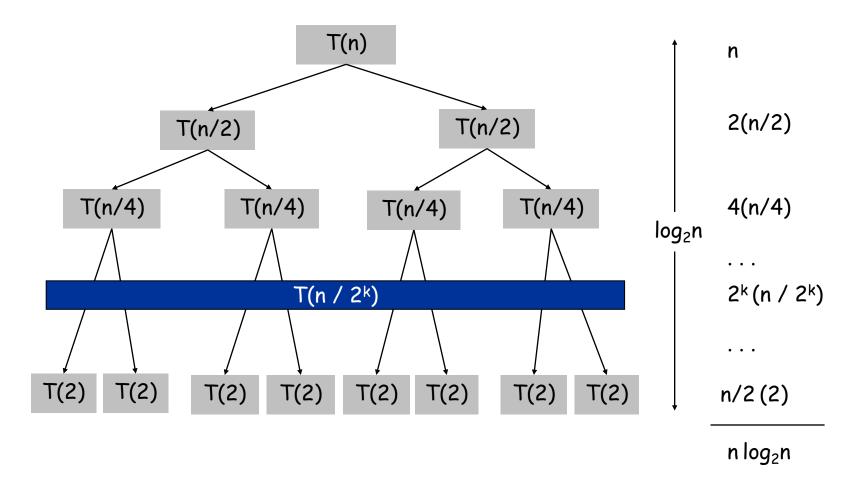
$$T(n) \, \leq \, \left\{ \begin{array}{ll} 0 & \text{if } n=1 \\ \\ T(\lfloor n/2 \rfloor) \, + \, T(\lceil n/2 \rceil) \, + \, n & \text{if } n>1 \\ \\ & \text{between } \lfloor n/2 \rfloor \text{ and } n-1 \text{ compares} \end{array} \right.$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$



Proof by Induction

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

assumes n is a power of 2

Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

recurrence
$$T(2n) = 2T(n) + 2n$$
inductive hypothesis $\longrightarrow = 2n \log_2 n + 2n$

$$= 2n (\log_2 (2n) - 1) + 2n$$

$$= 2n \log_2 (2n). \quad \blacksquare$$

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \, \leq \, \left\{ \begin{array}{ll} 0 & \text{if } n=1 \\ \\ T(\lfloor n/2 \rfloor) \, + \, T(\lceil n/2 \rceil) \, + \, n & \text{if } n>1 \end{array} \right.$$

Pf. (by induction on n)

- Base case: n = 1.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for 1, 2, ..., n-1.

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs								
	Α	В	С	D	Е				
Me	1	2	3	4	5				
You	1	3	4	2	5				

Inversions 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7
_		•			_						•

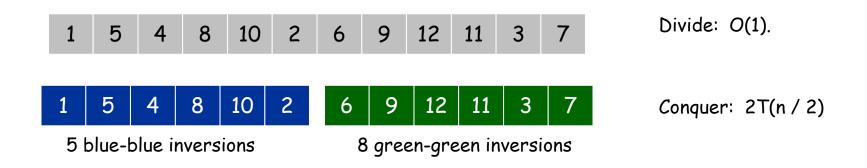
Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

5-4, 5-2, 4-2, 8-2, 10-2

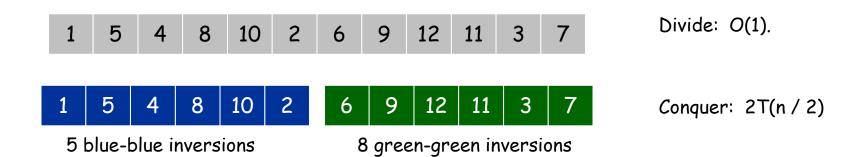
- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.



6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.



9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25

Merge: O(n)

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

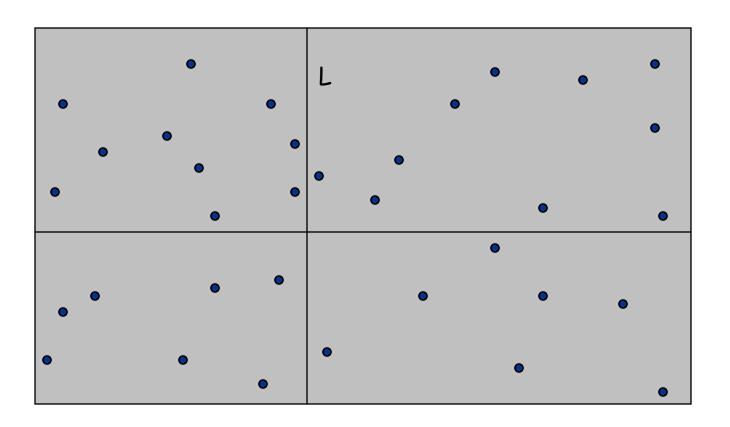
1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

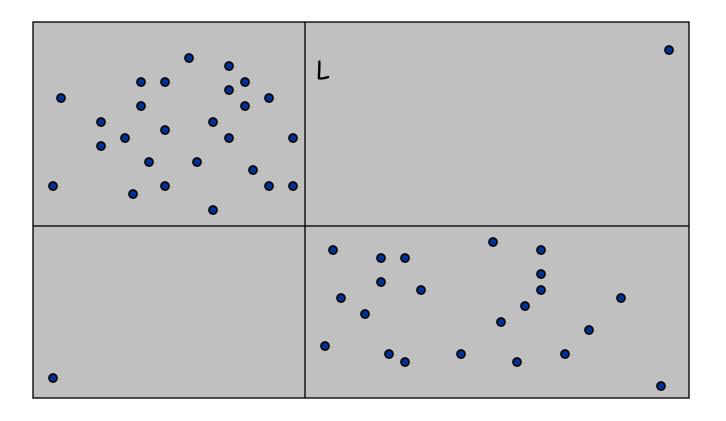
Divide. Sub-divide region into 4 quadrants.



Closest Pair of Points: First Attempt

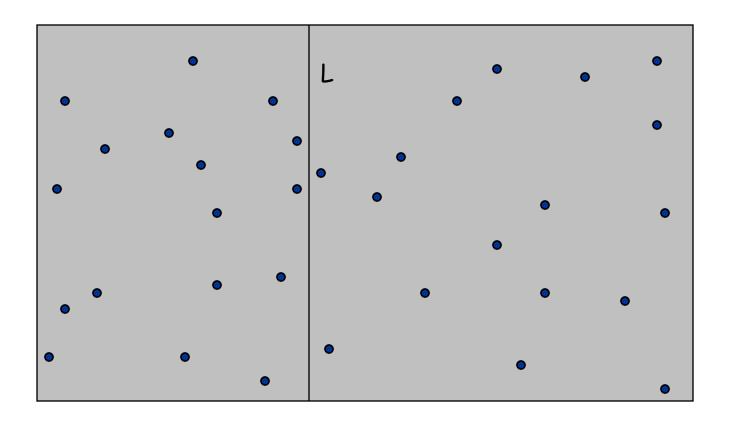
Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.



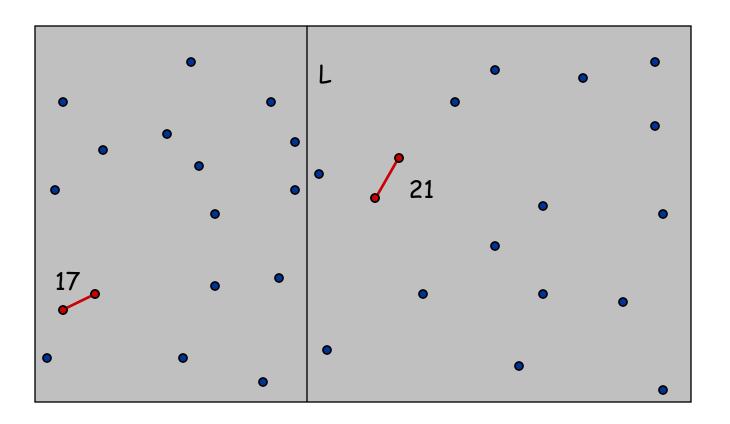
Algorithm.

Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.



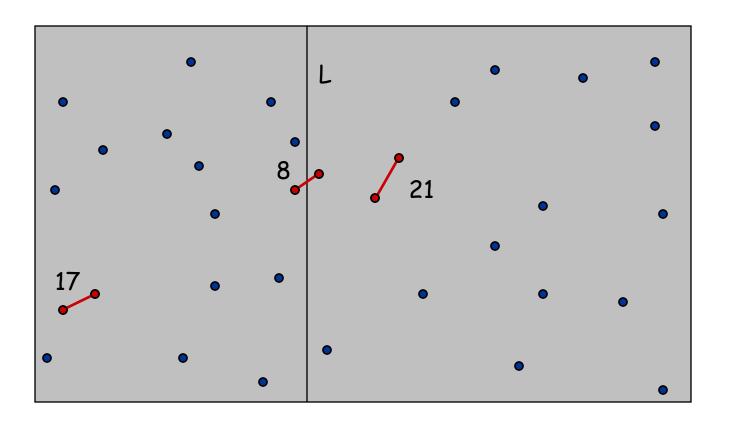
Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.



Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

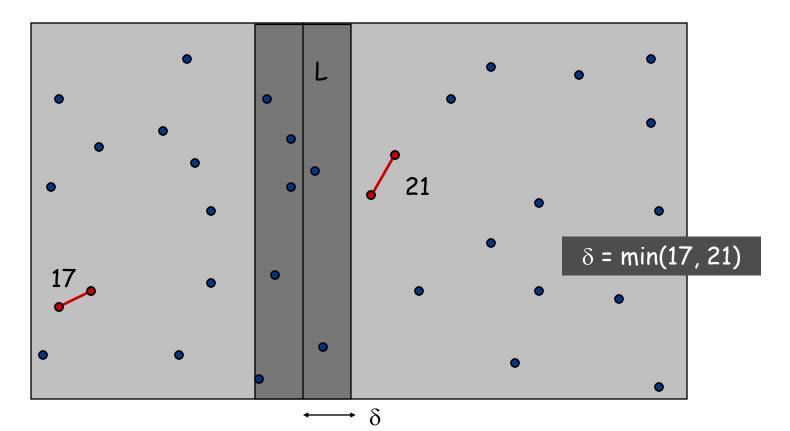


Find closest pair with one point in each side, assuming that distance $< \delta$.



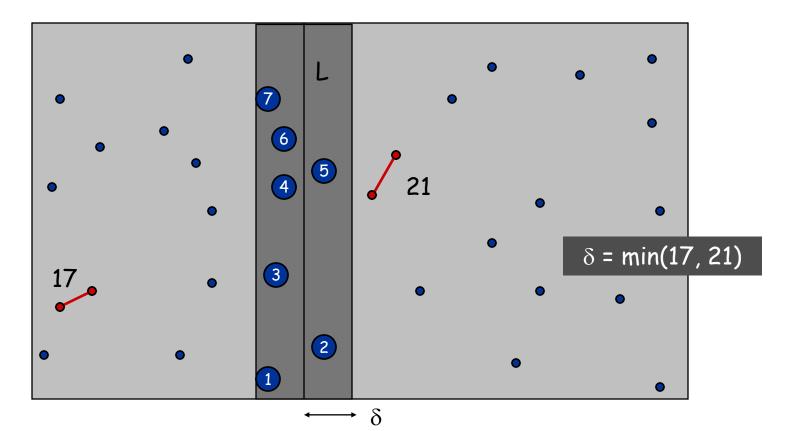
Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: only need to consider points within δ of line L.



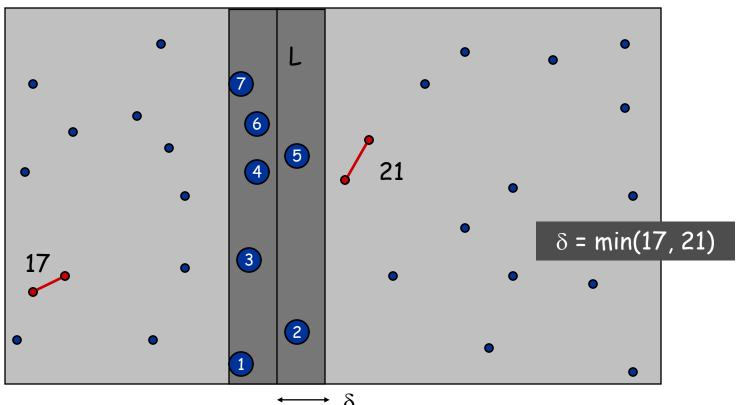
Find closest pair with one point in each side, assuming that distance < δ .

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.



Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

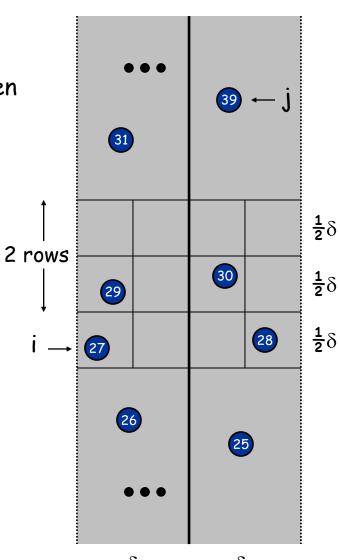


Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \ge 12$, then the distance between s_i and s_j is at least δ . Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.



Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                        O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                        2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                        O(n)
                                                                        O(n \log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                        O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

Closest Pair of Points: Analysis

Running time.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n \log n) & \text{if } n > 1 \end{cases}$$

- \mathbb{Q} . Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.
- Each recursive call returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a \times b.

Brute force solution: $\Theta(n^2)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0
			P	Ndd				

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four ½n-digit integers.
- Add two $\frac{1}{2}$ n-digit integers, and shift to obtain result.

$$m = \lceil n/2 \rceil$$

$$a = \lfloor x/2^m \rfloor \quad b = x \mod 2^m$$

$$c = \lfloor y/2^m \rfloor \quad d = y \mod 2^m$$

$$xy = (2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

$$2 \qquad 3 \qquad 4$$

$$T(n) \; = \; \left\{ \begin{array}{ll} \Theta(1) & \text{if } n=1 \\ \\ 4T(\lceil n/2 \rceil) \; + \; \Theta(n) & \text{if } n>1 \end{array} \right.$$
 assumes n is a power of 2

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two $\frac{1}{2}$ n digit integers.
- Multiply three $\frac{1}{2}$ n-digit integers.
- Add, subtract, and shift $\frac{1}{2}$ n-digit integers to obtain result.

$$x y = (2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

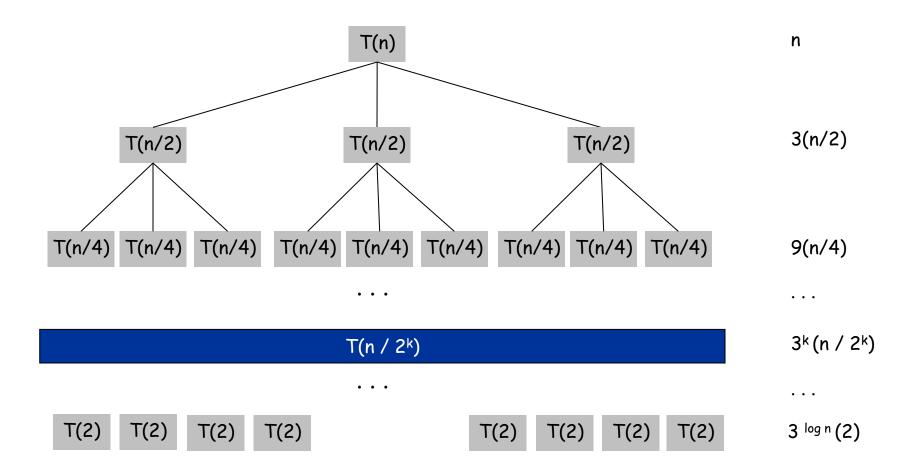
$$= 2^{2m} ac + 2^m (ac + bd - (a - b)(c - d)) + bd$$
1 1 3 2 3

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 3T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$\implies T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585})$$

Karatsuba: Recursion Tree



History of asymptotic complexity of integer multiplication

year	algorithm	bit operations
12xx	grade school	$O(n^2)$
1962	Karatsuba-Ofman	$O(n^{1.585})$
1963	Toom-3, Toom-4	$O(n^{1.465}), O(n^{1.404})$
1966	Toom-Cook	$O(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$O(n \log n \cdot \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
2019	Harvey-van der Hoeven	$O(n \log n)$
	333	O(n)

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Brute force. $\Theta(n^3)$ arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Warmup

Divide-and-conquer.

- Divide: partition A and B into $\frac{1}{2}$ n-by- $\frac{1}{2}$ n blocks.
- Conquer: multiply 8 $\frac{1}{2}$ n-by- $\frac{1}{2}$ n recursively.
- Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} A_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{bmatrix} C_{12} & = (A_{11} \times B_{12}) + (A_{12} \times B_{22}) \\ C_{21} & = (A_{21} \times B_{11}) + (A_{22} \times B_{21}) \\ C_{22} & = (A_{21} \times B_{12}) + (A_{22} \times B_{22}) \end{bmatrix}$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \qquad P_1 \leftarrow A_{11} \times (B_{12} - B_{22})$$

$$P_2 \leftarrow (A_{11} + A_{12}) \times B_{22}$$

$$C_{11} = P_5 + P_4 - P_2 + P_6 \qquad P_3 \leftarrow (A_{21} + A_{22}) \times B_{11}$$

$$C_{12} = P_1 + P_2 \qquad P_4 \leftarrow A_{22} \times (B_{21} - B_{11})$$

$$C_{21} = P_3 + P_4 \qquad P_5 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$C_{22} = P_1 + P_5 - P_3 - P_7 \qquad P_6 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_7 \leftarrow (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

- 7 multiplications.
- $_{n}$ 18 = 10 + 8 additions (or subtractions).

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

- Divide: partition A and B into $\frac{1}{2}$ n-by- $\frac{1}{2}$ n blocks.
- Compute: $14 \frac{1}{2}$ n-by- $\frac{1}{2}$ n matrices via 10 matrix additions.
- Conquer: multiply $7\frac{1}{2}$ n-by- $\frac{1}{2}$ n matrices recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2.
- T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Fast Matrix Multiplication in Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- . Odd matrix dimensions.
- Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports 8x speedup on G4 Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other matrix ops.

History of arithmetic complexity of matrix multiplication

year	algorithm	arithmetic operations
1858	"grade school"	$O(n^3)$
1969	Strassen	$O(n^{2.808})$
1978	Pan	$O(n^{2.796})$
1979	Bini	$O(n^{2.780})$
1981	Schönhage	$O(n^{2.522})$
1982	Romani	$O(n^{2.517})$
1982	Coppersmith-Winograd	$O(n^{2.496})$
1986	Strassen	$O(n^{2.479})$
1989	Coppersmith-Winograd	$O(n^{2.3755})$
2010	Strother	$O(n^{2.3737})$
2011	Williams	$O(n^{2.372873})$
2014	Le Gall	$O(n^{2.372864})$
	333	$O(n^{2+\varepsilon})$

number of arithmetic operations to multiply two n-by-n matrices