Chapter 4

Divide and Conquer

X Nl

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Divide-and-Conquer

Divide et impera.
Veni, vidi, vici.
Divide-and-conquer. - Julius Caesar
Break up problem into several parts.
Solve each part recursively.

Combine solutions to sub-problems into overall solution.

Most common usage.
Break up problem of size n into two equal parts of size 3n.
Solve two parts recursively.
Combine two solutions into overall solution in linear time.

Consequence.
Brute force: n?.
Divide-and-conquer: n log n.

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.

List names in a phone book.

Display Google PageRank
results.

Problems become easier once
sorted.
Find the median.
Find the closest pair.
Binary search in a
database.
Identify statistical
outliers.
Find duplicates in a mailing
list.

Non-obvious sorting applications.

Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of
particles.

Book recommendations on
Amazon.

Load balancing on a parallel
computer.

Mergesort

Mergesort.
Divide array into two halves.
Recursively sort each half.
Merge two halves to make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide 0O(1)
A G L O R H I M S T sort 2T(n/2)

A G H I L M O R S T merge O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? D>
. Linear number of comparisons.
. Use temporary array.

o e U e (S S P L
oo e secses S e
S) S S e S & e S
G © S, T S o S,
oo mimasess s
S A e L

o =

Challenge for the bored. In-place merge. [Kronrud, 1969]
T

using only a constant amount of extra storage

file:///C:/Users/srinivas/Desktop/TDT4121/05demo-merge.ppt#1. Merging

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 ifn=1
T(n) <
T(|n/2]) + T([n/2]) + n ifn>1
\
between [n/2]| and n — 1 compares

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Proof by Recursion Tree

(

0 ifn=1
T(n) = X

| 2T(n/2) + n iftn>1

T(n) n
T(n/2) T(n/2) 2(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) 4(n/4)
log,n
2k(n / 2K)
T(2) T(2) T2) T(2) T(2) T(2) T(2) T(2) n/2 (2)

nlog,n

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

0 itn=1
T(n) =
2T(n/2) + n ifn>1

Pf. (by induction on n)
Base case: n=1.
. Inductive hypothesis: T(n) = nlog, n.
. Goal: show that T(2n) = 2n log, (2n).

recurrence
T2n) = 2T(n) +2n
inductive hypothesis — = 2nlogan +2n
= 2n(log2(2n)—1) +2n

= 2nlogx(2n). =

t

assumes n is a power of 2

10

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <nllignl.
0 fn=1 o
T(n) <
T(|n/2]) + T([n/2]) + n ifn>1

Pf. (by induction on n)
Base case: n=1.
Definen;=ln/ 2], n,=In/ 2l
. Induction step: assume true forl,?2, .., n-1.

T(n) < T(m)+T(n2)+ n
inductive hypothesis —» < nj [logani] + n2[logama] + n
< ni[logana] + n2[loganz| + n
= n[loganz] +n

< n([logan]—1) +n < i logy na < [logyn] — 1

= n [logzn]. - : an integer

5.3 Counting Inversions

Counting Inversions

Music site tries To match your song preferences with others.
. You rank n songs.
Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
My rank: 1,2, .., n.
. Your rank: ay, a,, ..., a,.

Songs i and j inverted if i < j, but a; > g;.

Songs

Inversions

A | B | C|D|E

3 : 2 3 4 5

Bl : 3 4 2 5
—

3-2,4-2

Brute force: check all ®(n®) pairs i and j.

13

Applications

Applications.
. Voting theory.
. Collaborative filtering.
. Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
. Rank aggregation for meta-searching on the Web.

. Nonparametric statistics (e.g., Kendall's Tau distance).

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

HERIDORES BREREE

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.
Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DEODOE OREEEE - oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.
Conquer: recursively count inversions in each half.
Combine: count inversions where a; and a; are in different halves,

and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DENDDE OREOEE - o/

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 277
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =5+ 8 +9 =22,

18

Counting Inversions: Combine

Combine: count blue-green inversions

Assume each half is sorted. >

Count inversions where a; and a; are in different halves.
Merge two sorted halves into sorted whole.

to maintain sorted invariant

IEDDDE BOREED
6 3 2 2 0 0

13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

19

file:///C:/Users/srinivas/Desktop/TDT4121/05demo-merge-invert.ppt#1. Merge and Count

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

20

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and g with ®(h?) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

!

to make presentation cleaner

22

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

23

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

24

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly zn points on each side,

25

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly zn points on each side,
. Conquer: find closest pair in each side recursively.

26

Closest Pair of Points

Algorithm.
Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side. «— seems like ©(n?)
. Return best of 3 solutions.

27

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.

5 = min(17, 21)

28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
. Observation: only need to consider points within & of line L.

5 = min(17, 21)

29

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance <

d.
. Observation: only need to consider points within & of line L.
. Sort points in 23-strip by their y coordinate.

30

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance <
O.

. Observation: only need to consider points within 5 of line L.

. Sort points in 23-strip by their y coordinate.

. Only check distances of those within 11 positions in sorted list!

31

Closest Pair of Points

Def. Let s, be the point in the 25-strip, with
the ith smallest y-coordinate.

00
Claim. If |i- j| =12, then the distance between
s;and s; is at least 6.

P, e

. No two points lie in same 38-by-338 box.

o]

(N[

(N[

o]

(N[

D

. Two points at least 2 rows apart
have distance > 2(35). =« 2 rows
©
N | i~
Fact. Still true if we replace 12 with 7.
26
00

Closest Pair Algorithm

Closest-Pair(p,, .., P,) {
Compute separation line L such that half the points
are on one side and half on the other side.

8, = Closest-Pair (left half)
d, Closest-Pair (right half)
d = min(d,;, 9,)

Delete all points further than 8 from separation line L
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these

distances is less than §, update 6.

return 9o.

O(n log n)

2T(n/ 2)

O(n)

O(n log n)

O(n)

33

Closest Pair of Points: Analysis

Running time.

{@ﬂ) ifn=1
T(n) =
T([n/2]) + T([n/2]) + O(nlogn) ifn>1

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive call returns two lists: all points sorted by y
coordinate, and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

) O(1) if n =1
T'(n)=
T(|n/2]) + T([n/2]) + ©(n) ifn>1

34

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

O(n) bit operations.

Multiply. Given two n-digit intfegers a and b, compute a x b.

Brute force solution: ®(n?) bit operations.

+
(@) (@) — —

—_ | —_= =

O|+— O =

—_ | = =

Add

O|+— O =

oO|» ~ O

—= | O O =+

11010101
*01111101
110101010

Maltiply 000000000

110101010
110101010
110101010
110101010
110101010
000000000
01101000000000010

36

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:
. Multiply four $n-digit integers.
. Add two 3n-digit integers, and shift to obtain result.

m=[n/2]
| x/2™| b=xmod?2"

c=|y/2"| d=ymod?2"

a use bit shifting

to compute 4 terms

xy=Q2"a+b)2"c+d) = 2*ac + 2" (bc + ad) + bd
© © 6 ©

O(1) iftn=1
T(n) =
4T ([n/2]) + O(n) ifn>1
T

assumes n is a power of 2

37

Karatsuba Multiplication

To multiply two n-digit integers:
. Add two n digit integers.
. Multiply three $n-digit integers.
. Add, subtract, and shift 3n-digit integers to obtain result.

xy = 2"a+b)2"c+d) = 2*"ac + 2™ (bc + ad) + bd

= 2" qc + 2" (ac + bd — (a—b)(c-d)) + bd
(1 O O (2 3

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
in O(n!83) bit operations.

O(1) ifn=1
T(n) =
3 ([n/2]) + ©(n) ifn>1

— T(n) _ (_)(nlog23) — O(?’Ll'585)

38

Karatsuba: Recursion Tree

T(n) n
/ \
T(n/2) T(n/2) T(n/2) 3(n/2)
AN AN
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)
T(n/ 2% 3k(n / 2¥)

T2 T T@ T2 T@) T@) T@ T 3 legn(2)

39

History of asymptotic complexity of integer multiplication

12xX grade school O (n?)

1962 Karatsuba-Ofman O(n'>%)

1963 Toom-3, Toom-4 O (n'4%), O(n'4%)
1966 Toom-Cook O(n'*9

1971 Schénhage-Strassen O(nlog n - log log n)
2007 Fiirer n log n 29Uog™)
2019 Harvey-van der Hoeven O(n log n)

297 00

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

-
T
Cij = Z Ak bkj
_ - _ k=1
Chp Cp Gy a, 4ap In b]l b]Z b]n
Cn Cn 0 G| |8y 4y Qon o b, b, b,
_cnl CnZ e C}m | _aﬂ] a;rz e amf | _bnl bn2 e bmr |

Brute force. ©(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

42

Matrix Multiplication: Warmup

Divide-and-conquer.
. Divide: partition A and B into $n-by-3n blocks.
. Conquer: multiply 8 $n-by-3n recursively.
. Combine: add appropriate products using 4 matrix additions.

G, = (All XBII) + (A12XB21)
[Cu Cu] _ [All Am] g [811 812] Co = (4yxBy) + (4, xBy,)
G, G, - Ay Ay B,, B, Gy = (A2l XBll) + (A22XB21)
Cy = (A2l XBIZ) + (A22><B22)

T(n)= 8T(n/2) +

] L%

O(n?) = T(n)=0n")

)

-V- -
recursive calls add, form submatrices

43

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

[Cll CIQ] _ [All AIZ] v [Bll
C21 C22 AZ] A22 BZI

Cii = Ps+Ps—P2+ Ps
Cir = Pi+ P>
Co1 = P3+ Py

sz = P1+P5—P3—P7

. 7 multiplications.

. 18 = 10 + 8 additions (or subtractions).

BIQ
822

|

P1 <= An X (B12— Bx)
Py < (A1 +An) X Bn
P3 <= (A21 + A») X Bu
Py <= A2 X (B21—Bn)
Ps <= (A1 + A2) X (B + B»)
Pe <= (A12— Ax) X (B21 + B)
P7 <= (A1 — A21) X (B + B12)

44

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)
. Divide: partition A and B into $n-by-zn blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 $nh-by-3n matrices recursively.
. Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
. Assume n is a power of 2.
. T(n) = # arithmetic operations.

T(n) = 7T(n/2)+k O(n*) = T(n)=0n"2")=0n*")

~
recursive calls add, subtract

45

Fast Matrix Multiplication in Practice

Implementation issues.
. Sparsity.
. Caching effects.
. Numerical stability.
. Odd matrix dimensions.
. Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."
Advanced Computation Group at Apple Computer reports 8x speedup
on G4 Velocity Engine when n ~ 2,500.
. Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

46

History of arithmetic complexity of matrix multiplication

1858 “grade school” O(n3)
1969 Strassen O (n23808)
1978 Pan O(n2796)
1979 Bini O(n270)
1981 Schonhage O(n2322)
1982 Romani O (n2517)
1982 Coppersmith-Winograd O(n24%)
1986 Strassen O (n2479)
1989 Coppersmith-Winograd 0(n2375)
2010 Strother O(n23737)
2011 Williams O(n2372873)
2014 Le Gall O (n2372864)
299 O(n2+¢)

a & -

number of arithmetic operations to multiply two n-by-n matrices

