
1

Chapter 5

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2.5 Priority Queues

Min/Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:
▪ isEmpty
▪ size
▪ insert an element into the priority queue
▪ find an element with min/max priority
▪ delete an element with min/max priority

Complexity of Operations

Two good implementations are: heaps and
leftist trees.

isEmpty, size, and find => O(1) time

insert and delete => O(log n) time where n
is the size of the priority queue

Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value in the subtree
for which that node is the root.

Equivalently, no descendent has a smaller value.

Min Tree Example

2

4 9 3

4 8 7

9 9

Root has minimum element.

Max Tree Example

9

4 9 8

4 2 7

3 1

Root has maximum element.

Min Heap Definition

• complete binary tree

• min tree

Min Heap With 9 Nodes

Complete binary tree with 9 nodes that is
also a min tree.

2

4

6 7 9 3

8 6

3

Max Heap With 9 Nodes

Complete binary tree with 9 nodes that is
also a max tree.

9

8

6 7 2 6

5 1

7

Heap Height

Since a heap is a complete binary tree, the
height of an n node heap is log2 (n+1).

9 8 7 6 7 2 6 5 1

1 2 3 4 5 6 7 8 9 100

A Heap is Efficiently Represented as an
Array

9

8

6 7 2 6

5 1

7

Moving Up and Down a Heap

9

8

6 7 2 6

5 1

7

1

2 3

4 5 6 7

8 9

Inserting An Element Into A Max Heap

New element is 5.

9

8

6 7 2 6

5 1

7

75

Complete binary tree with 10 nodes.

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7

7

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

77

Inserting An Element Into A Max Heap

New element is 20.

9

86

7

2 6

5 1

7

77

Inserting An Element Into A Max Heap

New element is 20.

9

86

7

2 6

5 1

7

77

20

Inserting An Element Into A Max Heap

Complete binary tree with 11 nodes.

9

86

7

2 6

5 1

7

77

20

Inserting An Element Into A Max Heap

New element is 15.

9

86

7

2 6

5 1

7

77

20

Inserting An Element Into A Max Heap

New element is 15.

9

8

6

7

2 6

5 1

7

77

20

8

Inserting An Element Into A Max Heap

New element is 15.

8

6

7

2 6

5 1

7

77

20

8

9

15

Complexity Of Insert

Complexity is O(log n), where n is heap size.

8

6

7

2 6

5 1

7

77

20

8

9

15

Removing The Max Element

Max element is in the root.

8

6

7

2 6

5 1

7

77

20

8

9

15

Removing The Max Element

After max element is removed.

8

6

7

2 6

5 1

7

77 8

9

15

Removing The Max Element

Heap with 10 nodes.

8

6

7

2 6

5 1

7

77 8

9

15

Reinsert 8 into the heap.

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

77

9

15

8

Removing The Max Element

Max element is 15.

6

7

2 6

5 1

7

77

9

15

8

Removing The Max Element

After max element is removed.

6

7

2 6

5 1

7

77

9

8

Removing The Max Element

Heap with 9 nodes.

6

7

2 6

5 1

7

77

9

8

Removing The Max Element

Reinsert 7.

6 2 6

5 1

79

8

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

7

Complexity Of Remove Max Element

Complexity is O(log n).

6 2 6

5 1

7

9

8

7

Initializing A Max Heap

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

8

4

7

6 7

8 9

3

710

1

11

5

2

Initializing A Max Heap

Start at rightmost array position that has a child.

8

4

7

6 7

8 9

3

710

1

11

5

2

Index is n/2.

Initializing A Max Heap

Move to next lower array position.

8

4

7

6 7

8 9

3

710

1

5

11

2

Initializing A Max Heap

8

4

7

6 7

8 9

3

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

710

1

5

11

Find a home for 2.

Initializing A Max Heap

8

9

7

6 3

8 4

7

75

1

11

Find a home for 2.

10

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

Done, move to next lower array position.

10

5

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

1

11

10

5

Find home for 1.

11

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

72

11

10

5

Done.

1

Time Complexity

87

6 3

4

7

710

11

5

2

9

8

1

Height of heap = h.

Number of subtrees with root at level j is <= 2 j-1.

Time for each subtree is O(h-j+1).

Complexity

Time for level j subtrees is <= 2j-1(h-j+1) = t(j).

Total time is t(1) + t(2) + … + t(h-1) = O(n).

55

Priority queue operations (Min Heap)

† Individual ops are amortized bounds

PQ Operation

Insert
ExtractMin

DecreaseKey

Binary heap

log n
log n
log n

Fib heap †

1
log n

1

Array

1/n
n/1
1/n

IsEmpty 1 11

d-way Heap

d log d n
d log d n
log d n

1
Size 1 1 1 1

5.5 Minimum Spanning Tree (MST)

Minimum-Cost Spanning Tree

Given a weighted connected undirected graph:

find a spanning tree that has minimum cost
(cost of spanning tree is sum of edge costs)

Example

Network has 10 edges.

Spanning tree has only n - 1 = 7 edges.

Need to either select 7 edges or discard 3.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

Edge Selection Greedy Strategies

Kruskal’s method.
Start with an n-vertex 0-edge forest. Consider edges in ascending
order of cost. Select edge if it does not form a cycle together with
already selected edges.

Prim’s method.
Start with a 1-vertex tree and grow it into an n-vertex tree by
repeatedly adding a vertex and an edge. When there is a choice, add a
least cost edge.

Sollin’s method.

Start with an n-vertex forest. Each component/tree selects a least

cost edge to connect to another component/tree. Eliminate duplicate

selections and possible cycles. Repeat until only 1 component/tree is

left.

Edge Rejection Greedy Strategies

• Start with the connected graph. Repeatedly find a cycle and

eliminate the highest cost edge on this cycle. Stop when no cycles

remain.

• Consider edges in descending order of cost. Eliminate an edge

provided this leaves behind a connected graph.

Kruskal’s Method

Start with a forest that has no edges.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

• Consider edges in ascending order of cost.

• Edge (1,2) is considered first and added to the forest.

Kruskal’s Method

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

2
3

• Edge (3,4) is considered next and added.

4

• Edge (5,6) is considered next and added.

6

• Edge (2,3) is considered next and added.

7

• Edge (1,3) is considered next and rejected because it

creates a cycle.

• Edge (7,8) is considered next and added.

Kruskal’s Method

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

2
34

• Edge (3,5) is considered next and added.

6

10

• Edge (3,6) is considered next and rejected.

7

• Edge (5,7) is considered next and added.

14

• Edge (2,4) is considered next and rejected.

Kruskal’s Method

n - 1 edges have been selected and no cycle formed.

So, we must have a spanning tree.

Cost is 46.

Min-cost spanning tree is unique when all edge costs are different.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

2
34 6

10

7

14

Prim’s Method

Start with any single vertex tree.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

5

• Get a 2-vertex tree by adding a cheapest edge.

6

6

• Get a 3-vertex tree by adding a cheapest edge.

3
10

• Grow the tree one edge at a time until the tree has n - 1 edges

(and hence has all n vertices).

4

4

2

7
1

2

7
14

8

3

Sollin’s Method

1 3 5 7

2 4 6 8

2 4 6 3

10 14

127

9

• Start with a forest that has no edges.

1 3 5 7

2 4 6 8

• Each component selects a least cost edge with which to

connect to another component.

• Duplicate selections are eliminated.

• Cycles are possible when the graph has some edges that

have the same cost.

2 4 6 3

8

Sollin’s Method

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

127

9

1 3 5 7

2 4 6 8

• Each component that remains selects a least cost edge

with which to connect to another component.

• Beware of duplicate selections and cycles.

7
2 4 6 3

10 14

Greedy Minimum-Cost Spanning Tree
Methods

Can prove that all the algorithms return a minimum-cost spanning tree.

Prim’s method is fastest.

▪ O(n2) or O(m log n) using array or binary heap, using an
implementation similar to that of Dijkstra’s shortest-path
algorithm.

▪ O(m + n log n) using a Fibonacci heap.

Kruskal’s uses union-find trees to run in O(n + m log m) time.

Pseudocode For Kruskal’s Method

Start with an empty set T of edges

while (E is not empty && |T| != n-1)
{

Let (u,v) be a least-cost edge in E
E = E - {(u,v)} // delete edge from E
if ((u,v) does not create a cycle in T)

Add edge (u,v) to T
}

if (| T | == n-1) T is a min-cost spanning tree
else Network has no spanning tree

Data Structures For Kruskal’s Method

Edge set E.

Operations are:

▪ Is E empty?

▪ Select and remove a least-cost edge.

Use a min heap of edges.

▪ Initialize -- O(m) time.

▪ Remove and return least-cost edge -- O(log m) time.

Data Structures For Kruskal’s Method

Set of selected edges T.

Operations are:

▪ Does T have n - 1 edges?

▪ Does the addition of an edge (u, v) to T result in a cycle?

▪ Add an edge to T.

Data Structures For Kruskal’s Method

Use an array for the edges of T.

▪ Does T have n - 1 edges?

• Check size of the array -- O(1) time.

▪ Does the addition of an edge (u, v) to T result in a cycle?

• Not easy.

▪ Add an edge to T.

• Add at right end of the array -- O(1) time.

Data Structures For Kruskal’s Method

Does the addition of an edge (u, v) to T result in a cycle?

1 3 5 7

2 4 6 8

2
34 67

• Each component of T is a tree.

• When u and v are in the same component, the addition of the

edge (u,v) creates a cycle.

• When u and v are in the different components, the addition of

the edge (u,v) does not create a cycle.

Data Structures For Kruskal’s Method

1 3 5 7

2 4 6 8

2
34 67

• Each component of T is defined by the vertices in the

component.

• Represent each component as a set of vertices.

▪ {1, 2, 3, 4}, {5, 6}, {7, 8}

• Two vertices are in the same component iff they are in the

same set of vertices.

Data Structures For Kruskal’s Method

• When an edge (u, v) is added to T, the two components that

have vertices u and v combine to become a single component.

1 3 5 7

2 4 6 8

2
34 67

• In our set representation of components, the set that has

vertex u and the set that has vertex v are united.

▪ {1, 2, 3, 4} + {5, 6} => {1, 2, 3, 4, 5, 6}

Data Structures For Kruskal’s Method

• Initially, T is empty.

1 3 5 7

2 4 6 8

• Initial sets are:

▪ {1} {2} {3} {4} {5} {6} {7} {8}

• Does the addition of an edge (u, v) to T result in a cycle? If

not, add edge to T.

s1 = find(u); s2 = find(v);

if (s1 != s2) union(s1, s2);

Data Structures For Kruskal’s Method

• Use FastUnionFind.

• Initialize.

▪ O(n) time.

• At most 2m finds and n-1 unions.

▪ Very close to O(n + m).

• Min heap operations to get edges in increasing order of cost

take O(m log m).

• Overall complexity of Kruskal’s method is O(n + m log m).

Huffman codes

5.8 Huffman Coding

Fixed length codes

Want to represent data as a sequence of 0’s and 1’s

For example: BACADAEAFABBAAAGAH

A-000 B-001 C-010 D-011 E-100 F-101 G-110 H-111

001 000 010 000 011 000 100 000 101 000 001 001 000 000
000 110 000 111 (length 54)

This is a fixed length code.

Can we make the sequence of 0’s and 1’s shorter ?

Variable length codes

A 0 B 100 C 1010 D 1011

E 1100 F 1101 G 1110 H 1111

100010100101101100011010100100000111001111

(length 42)

This is a variable length code.

How do we decode ?

Use prefix codes: No codeword is a prefix of the
other

Representing prefix codes

A 0 B 100 C 1010 D 1011

E 1100 F 1101 G 1110 H 1111

A prefix code corresponds to a
binary tree with the symbols at the
leaves and vice versa.

A

B

C D E F G H

Construction Algorithm

Compute the character frequencies

Insert the frequencies into a min heap

Repeat

n Delete the two minimum elements, f1 and f2 from the heap

n insert f1+f2 into the heap

Complexity: O(n log n).

Theorem: Huffman algorithm is optimal for a symbol-by-symbol coding.

Construction of Huffman tree

A B C D E F G H
8 3 1 1 1 1 1 1

2 {G,H}2 {E,F}2 {C,D}

4 {E,F,G,H}5 {B,C,D}

9 {B,C,D,E,F,G,H}

17
{A,B,C,D,E,F,G,H}

Representation

17

2 2

9

45

2

A

B

C D E F G H

8

3

1 1 11 1 1

Left child – 0

Right child – 1

code(D) = 1011; code(F) = 1101

