Chapter 5

Greedy
Algorithms

3 it i

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2.5 Priority Queues

Min/Max Priority Queue

Collection of elements.
Each element has a priority or key.

Supports following operations:

. iIsEmpty

. size

. insert an element into the priority queue
. find an element with min/max priority

. delete an element with min/max priority

Complexity of Operations

Two good implementations are: heaps and
leftist trees.

iIsEmpty, size, and find => O(1) time

insert and delete => O(log n) time where n
is the size of the priority queue

Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value in the subtree
for which that node is the root.

Equivalently, no descendent has a smaller value.

Min Tree Example

2%
‘o ‘/I\

Root has minimum element.

Max Tree Example

2%
‘o ‘/I\

Root has maximum element.

Min Heap Definition

complete binary tree

min tree

Min Heap With 9 Nodes

/‘
e

Complete binary tree with 9 nodes that is
also a min tree.

Max Heap With 9 Nodes

/‘
e

Complete binary tree with 9 nodes that is
also a max tree.

Heap Height

Since a heap is a complete binary tree, the
height of an n node heap is log, (n+1).

A Heap is Efficiently Represented as an
Array

/“\/\

o 1 2 3 4 5 6 7 8 9 10

Moving Up and Down a Heap

Inserting An Element Into A Max Heap

/‘

¢ oo

Complete binary tree with 10 nodes.
New element is b.

_—
(2)

Inserting An Element Into A Max Heap

=

New element is 20.

Inserting An Element Into A Max Heap

/’

¢ oo

New element is 20.

_—
(2)

Inserting An Element Into A Max Heap

/’

¢ oo

New element is 20.

_—
(2)

Inserting An Element Into A Max Heap

/’

¢ oo

New element is 20.

_—
(2)

Inserting An Element Into A Max Heap

/’
e

Complete binary tree with 11 nodes.

Inserting An Element Into A Max Heap

/’
e

New element is 15.

Inserting An Element Into A Max Heap

/’
e

New element is 15.

Inserting An Element Into A Max Heap

/’
e

New element is 15.

Complexity Of Insert

/’
e

"

Complexity is O(log n), where n is heap size.

Removing The Max Element

/’
e

Max element is in the root.

Removing The Max Element

/’
e

After max element is removed.

Removing The Max Element

/‘

s 0/

Heap with 10 nodes.

_—
(2)

Reinsert 8 into the heap.

Removing The Max Element

/’

¢ oo

Reinsert 8 into the heap.

_—
(2)

Removing The Max Element

/’

¢ oo

Reinsert 8 into the heap.

_—
(2)

Removing The Max Element

/’

¢ oo

Reinsert 8 into the heap.

_—
(2)

Removing The Max Element

/’

¢ oo

Max element is 15.

_—
(2)

Removing The Max Element

/’

¢ oo

After max element is removed.

_—
(2)

Removing The Max Element

/’
e

s @)

Heap with 9 nodes.

Removing The Max Element

/’
e

Reinsert 7.

Removing The Max Element

/’
e

Reinsert 7.

Removing The Max Element

/’
e

Reinsert 7.

Complexity Of Remove Max Element

/’
e

Complexity is O(log n).

Initializing A Max Heap

/’

¢ oo

input array = [-, 1,2, 3,4,5,6,7,8,9,10,11]

_—
(6

Initializing A Max Heap

/’

¢ oo

Start at rightmost array position that has a child.

_—
(6

Index 1S n/2.

Initializing A Max Heap

/‘

¢ oo

Move to next lower array position.

_—
(6

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Initializing A Max Heap

Find a home for 2.

Initializing A Max Heap

Find a home for 2.

Initializing A Max Heap

Done, move to next lower array position.

Initializing A Max Heap

Find home for 1.

Initializing A Max Heap

Find home for 1.

Initializing A Max Heap

Find home for 1.

Initializing A Max Heap

Find home for 1.

Initializing A Max Heap

Done.

Time Complexity

/’

¢ o0

Height of heap = h.
Number of subtrees with root at level j is <= 2 I,

_—
(6

Time for each subtree is O(h-j+1).

Complexity

Time for level j subtrees is <= 2-1(h-j+1) = 1()).

Total time is t(1) + t(2) + ... + t(h-1) = O(n).

Priority queue operations (Min Heap)

PQ Oper‘ahon Binary heap|d-way Heap| Fib heap T

1/n log n dlog4n

n/1 log n dlog4n Iog n
1/n log n log 4 n 1

1 1 1 1

1 1 1 1

T Individual ops are amortized bounds

55

5.5 Minimum Spanning Tree (MST)

Minimum-Cost Spanning Tree

Given a weighted connected undirected graph:

find a spanning tree that has minimum cost
(cost of spanning tree is sum of edge costs)

Example

Network has 10 edges.
Spanning tree has only n - 1 = 7 edges.
Need to either select 7 edges or discard 3.

Edge Selection Greedy Strategies

Kruskal's method.

Start with an n-vertex 0-edge forest. Consider edges in ascending
order of cost. Select edge if it does not form a cycle together with
already selected edges.

Prim's method.
Start with a 1-vertex tree and grow it into an n-vertex tree by
repeatedly adding a vertex and an edge. When there is a choice, add a

least cost edge.

Sollin's method.

Start with an n-vertex forest. Each component/tree selects a least
cost edge to connect to another component/tree. Eliminate duplicate
selections and possible cycles. Repeat until only 1 component/tree is

left.

Edge Rejection Greedy Strategies

Start with the connected graph. Repeatedly find a cycle and
eliminate the highest cost edge on this cycle. Stop when no cycles
remain.

Consider edges in descending order of cost. Eliminate an edge
provided this leaves behind a connected graph.

Kruskal's Method

Start with a forest that has no edges.

Consider edges in ascending order of cost.
Edge (1,2) is considered first and added to the forest.

Kruskal's Method

PN P

Edge (7,8) Is considered next and added.
Edge (3,4) is considered next and added.

Edge (5,6) is considered next and added.
Edge (2,3) Is considered next and added.

Edge (1,3) iIs considered next and rejected because it
creates a cycle.

Kruskal's Method

PNT | LT

Edge (2,4) is considered next and rejected.

Edge (3,5) is considered next and added.
Edge (3,6) is considered next and rejected.

Edge (5,7) Is considered next and added.

Kruskal's Method

PN UT

n - 1 edges have been selected and no cycle formed.

So, we must have a spanning tree.

Cost is 46.

Min-cost spanning tree is unique when all edge costs are different.

Prim's Method

Start with any single vertex tree.

Get a 2-vertex tree by adding a cheapest edge.

Get a 3-vertex tree by adding a cheapest edge.

Grow the tree one edge at a time until the tree has n - 1 edges
(and hence has all n vertices).

Sollin's Method

[111

Start with a forest that has no edges.

Each component selects a least cost edge with which to
connect to another component.

Duplicate selections are eliminated.

Cycles are possible when the graph has some edges that
have the same cost.

Sollin's Method

Each component that remains selects a least cost edge
with which to connect to another component.

Beware of duplicate selections and cycles.

Greedy Minimum-Cost Spanning Tree
Y Methods P J

Can prove that all the algorithms return a minimum-cost spanning tree.
Prim's method is fastest.

. O(n?) or O(m log n) using array or binary heap, using an
implementation similar to that of Dijkstra's shortest-path
algorithm.

. O(m + n log n) using a Fibonacci heap.

Kruskal's uses union-find trees to runin O(n + m log m) time.

Pseudocode For Kruskal's Method

Start with an empty set T of edges

! (E is not empty && | T| I= n-1)

Let (u,v) be a least-cost edge in E
E=E-{(uv)}
((u,v) does not create a cycle in T)
Add edge (uyv)to T

(I T|==n-1) T is a min-cost spanning tree
Network has no spanning tree

Data Structures For Kruskal's Method

Edge set E.

Operations are:
Is E empty?
Select and remove a least-cost edge.

Use a min heap of edges.
Initialize -- O(m) time.
Remove and return least-cost edge -- O(log m) time.

Data Structures For Kruskal's Method

Set of selected edges T.

Operations are:
Does T have n - 1 edges?
Does the addition of an edge (u, v) to T result in a cycle?
Add an edge to T.

Data Structures For Kruskal's Method

Use an array for the edges of T.
Does T have n - 1 edges?
Check size of the array -- O(1) time.
Does the addition of an edge (u, v) to T result in a cycle?
Not easy.
Add an edge to T.
Add at right end of the array -- O(1) time.

Data Structures For Kruskal's Method

Does the addition of an edge (u, v) to T result in a cycle?

2

Each component of T is a tree.
When u and v are in the same component, the addition of the
edge (u,v) creates a cycle.

When u and v are in the different components, the addition of
the edge (u,v) does not create a cycle.

Data Structures For Kruskal's Method

i

Each component of T is defined by the vertices in the
component.

Represent each component as a set of vertices.
= {1, 2,3, 4}, {5, 6}, {7, 8}

Two vertices are in the same component iff they are in the
same set of vertices.

Data Structures For Kruskal's Method

iy

When an edge (u, V) Is added to T, the two components that
have vertices u and v combine to become a single component.

In our set representation of components, the set that has
vertex u and the set that has vertex v are united.

= {1,2,3,4}+{5,6}=>{1,2,3,4,5,6}

Data Structures For Kruskal's Method

Initially, T Is empty.
o © 06 O

Initial sets are:

" {13 {2} {3} {4F {53 {63 {7} {8}
Does the addition of an edge (u, v) to T result in a cycle? If
not, add edge to T.

sl = find(u); s2 = find(v);
(s1 !'=s2) union(sl, s2);

Data Structures For Kruskal's Method

Use FastUnionFind.

Initialize.
= O(n) time.

At most 2m finds and n-1 unions.
= Very close to O(n + m).

Min heap operations to get edges in increasing order of cost
take O(m log m).

Overall complexity of Kruskal’s method is O(n + m log m).

Huffman codes

5.8 Huffman Coding

Fixed length codes

Want to represent data as a sequence of O's and 1's

For example: BACADAEAFABBAAAGAH
A-000 B-001 ¢-010 D-011 E-100 F-101 G-110 H-111

001 000 010 000 011 000 100 000 101 000 001 001 000 000
000 110 000 111 (length 54)

This is a fixed length code.

Can we make the sequence of O's and 1's shorter ?

Variable length codes

A O B 100 C 1010 D 1011
E 1100 F 1101 6 1110 H 1111
100010100101101100011010100100000111001111
(length 42)
This is a variable length code.
How do we decode ?

Use prefix codes: No codeword is a prefix of the
other

Representing prefix codes

A O B 100 € 1010 D 1011
E 1100 F 1101 6 1110 H 1111

A prefix code corresponds fo a
binary tree with the symbols at the
leaves and vice versa.

Construction Algorithm

Compute the character frequencies

Insert the frequencies into a min heap

Repeat
. Delete the two minimum elements, f1 and f2 from the heap
. insert f1+f2 into the heap

Complexity: O(n log n).

Theorem: Huffman algorithm is optimal for a symbol-by-symbol coding.

Construction of Huffman tree

{A,B,C,D,E,F,G,H}

Representation

Left child -0
Right child — 1

1 1 1 1 1 1

code(D) = 1011; code(F) = 1101

