Dynamic Programming
Part 2

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, *).
. No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.
. Clever combination of divide-and-conquer and dynamic programming.
. Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.
. Let (i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(i, j).

Y5

Yo

Sequence Alignment: Linear Space

Edit distance graph.
. Let (i, j) be shortest path from (0,0) to (i, j).
. Can compute f (v, j) for any j in O(mn) time and O(m + n) space.

€ Y1 Y2 Y3 Y4

Y5

Yo

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the roles of (0, 0) and (m, n)

N\

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(*, j) for any j in O(mn) time and O(m + n) space.

Yo

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, §) + 9(i, j).

€ Y1 Y2 Y3 Ya

Y5

Yo

Sequence Alignment: Linear Space
Observation 2. let g be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path

from (O, O) to (m, n) uses (g, n/2).

n/?2

€ Y1 Y2 Y3 Ya Y5 Yo

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
. Align x, and y, ;.

Conquer: recursively compute optimal alignment in each piece.

n/?2

Yo

10

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of length at most m and n.
T(m, n) = O(mn log n).

Pf. T(m,n) is monotone nondecreasing in both m and n.
T(m,n) < 2 T(m, n/2) + O(mn)

which solves to T(m,n) = O(mn log n)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - g, n/2). In next slide, we save log n factor.

1

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) =
O(mn).

Pf. (by induction on n)
. O(mn) time to compute f(+, n/2) and g (*, n/2) and find index q.
. T(q, n/2) + T(m - q, n/2) time for two recursive calls.

. Choose constant ¢ so that: Tm,2) < cm

A 1A

712, n)
T(m,n)

cn

IA

cmn+T1T(g,n/2)+Tm—-q,n/2)

. Base cases:m=2orn=2.
. Inductive hypothesis: T(m, n) < 2cmn.

T(m,n) T(q,n/2)+T(m-q,n/2)+cmn

2cqgn/2+2c(m—-q)n/2+cmn

IA A

cgn +cmn —cgn +cmn
2cmn

12

All-Pairs Shortest Paths Problem

All-Pairs Shortest Paths

e Given an n-vertex directed weighted graph, find a shortest
path from vertex i to vertex j for each of the n? vertex pairs

(i,j).

Dijkstra’s Single Source Algorithm

e Use Dijkstra’s algorithm n times, once with each of the n
vertices as the source vertex.

Performance

e Time complexity is O(n3) time.

e Works only when no edge has a cost < 0.

Dynamic Programming Solution

Time complexity is Theta(n3) time.
Works so long as there is no cycle whose length is < 0.

When there is a cycle whose length is < 0, some shortest paths
aren’t finite.

= |f vertex 1 is on a cycle whose length is -2, each time you go
around this cycle once you get a 1 to 1 path that is 2 units
shorter than the previous one.

Simpler to code, smaller overheads.

Known as Floyd’s shortest paths algorithm.

Decision Sequence

e o Mre

i J

* First decide the highest intermediate vertex (i.e., largest
vertex number) on the shortest path fromi toj.

* If the shortest pathisi, 2, 6, 3, 8, 5, 7, j the first decision is
that vertex 8 is an intermediate vertex on the shortest path
and no intermediate vertex is larger than 8.

* Then decide the highest intermediate vertex on the path
fromito 8, and so on.

Problem State

e o Mre

i J

* (i,j,k) denotes the problem of finding the shortest path from vertex i
to vertex j that has no intermediate vertex larger than k.

* (i,j,n) denotes the problem of finding the shortest path from vertex i
to vertex j (with no restrictions on intermediate vertices).

Cost Function

C V\J\-’\J\'\J“

* Let c(i,j, k) be the length of a shortest path from vertex i to vertex j
that has no intermediate vertex larger than k

c(i,j,n)

* c(i,j,n) is the length of a shortest path from vertex i to
vertex j that has no intermediate vertex larger than n

* No vertex is larger than n

* Therefore, c(i,j,n) is the length of a shortest path from
vertex i to vertex j

c(i,j,0)

* ¢(i,j,0) is the length of a shortest path from vertex i to vertex j
that has no intermediate vertex larger than 0.

= Every vertex is larger than 0.

= Therefore, c(i,j,0) is the length of a single-edge path from
vertex i to vertex j.

Recurrence For c(i,j, k), k>0

* The shortest path from vertex i to vertex j that has no intermediate
vertex larger than k may or may not go through vertex k.

* |If this shortest path does not go through vertex k the largest
permissible intermediate vertex is k-1. So the path length is c(i,j,k-1).

e A M

Recurrence For c(i,j,k)), k>0

e Shortest path goes through vertex k

k
. =
i J
* We may assume that vertex k is not repeated because no cycle

has negative length.

 Largest permissible intermediate vertex on i to k and k to | paths
IS k-1.

Recurrence For c(i,j,k)), k>0
k
e V\J\-/\J\'\N
i J

 1to k path must be a shortest I to k path that goes through no
vertex larger than k-1.

« If not, replace current i to k path with a shorter i to k path to get
an even shorter i to j path.

Recurrence For c(i,j,k)), k>0

0 s Mo

i J

Similarly, k to j path must be a shortest k to | path that goes
through no vertex larger than k-1.

Therefore, length of | to k path is c(i,k,k-1), and length of k to |
path is c(k,j,k-1).
So, c(i,j,k) = c(i,k,k-1) + c(k,j,k-1).

Recurrence For c(i,j,k)), k>0

. o~ Mo

i J

e Combining the two equations for c(i,j, k), we get c(i,j,k) =
min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}.

e We may compute the c(i,j,k)s in the order k=1, 2, 3, ..., n.

Floyd’s Shortest Paths Algorithm

for (intk=1; k <=n; k++)
for (inti=1;i<=n;i++)
for(intj=1;j<=n; j++)
c(i,j,k) = min{c(i,j,k-1),
c(i,k,k-1) + c(k,j,k-1)};

« Time complexity is O(n?)
« More precisely Theta(n?)
« Theta(n?®) space is needed for c(*,*,*).

Space Reduction
* c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

* When neither i norjequals k, c(i,j,k-1) is used only in the
computation of c(i,j,k).

column k

K
—

* So, c(l,J,k) can overwrite c(i,],k-1).

Space Reduction

* c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

 When i equals k, c(i,j,k-1) equals c(i,j,k).
" c(k,j,k) = min{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)}
= min{c(k,j,k-1), 0 + c(k,j,k-1)}
= c(k,j,k-1)

* So, when i equals k c(i,j,k) can overwrite c(i,j,k-1)
 Similarly, when j equals k c(i,j,k) can overwrite c(i,j,k-1)

* So, in all cases c(i,j,k) can overwrite c(i,j,k-1).

Floyd’s Shortest Paths Algorithm

for (intk=1; k <=n; k++)
for (inti=1;i<=n;i++)
for(intj=1;j<=n; j++)
c(i,j) = min{c(i,j), c(i,k) + c(k,j)};

« Initially, c(i,)) = c(i,},0).
« Upon termination, c(i,j) = c(i,],n).

« Time complexity is Theta(n®).

« Theta(n?) space is needed for c(*,*).

Building The Shortest Paths

e Let kay(i,j) be the largest vertex on the shortest path fromitoj
e [|nitially, kay(i,j) = O (shortest path has no intermediate vertex).

for (int k = 1; k <=n; k++)
for (int1=1;1<=n; i++)
for (intj=1;] <=n; j++)
It (c(i,j) > c(i,k) + c(k,)))
tkay(1.]) = k; c(1.)) = c(1,k) + c(k,));}

i'

16

Initial Cost Matrix
C(*,*) — C(*,*,O)

Final Cost Matrix c(*,*) = c(*,*,n)

0
10
12
15
6
3
2

6 5 110 13 14 11
015 8 4 7 8 5
/7 013 9 910 10
520 0 912 13 10
911 4 0 3 4 1
9 8 413 0 1 5
8 7 312 6 0 4

51110 615 2 3 O

kay Matrix

70050065
80802885
834800880
77777007
04114800
77777060

Shortest Path

Shortest path from 1 to 7.

Path length is 14.

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

Build A Shortest Path

Thepathis1425867

kay(1,7) =8
1 8 I
kay(1,8) =5
1 5 8
kay(1,5) =4

1 4 5

Build A Shortest Path

04004885 Thepathis1425867

80850885

70050065 . 4 0 8

80802885 - kay(1,4)=0

84800880

77777007 L4 > 8 !

04114800 * Kay(4,9) =2

77777060 14 2 5
kay(4,2) =0

14 2 5 8

Build A Shortest Path

04004885 °* Thepathis 1425867
80850885
14 2 5 8

70050065
80802885 * kay(2,5) =0
84800880 14 25 8 {
04114800 14 258 7
77777060

* kay(8,7) = 6

14 258 6

04004885
80850885
70050065
80802885
84800880
77777007
04114800
77777060

Build A Shortest Path

® Thepathis1425867

14 258

* kay(8,6) =0
14 2586

* kay(6,7) =0
14 25867

6

v

v

Output A Shortest Path

public static void outputPath(int i, int j)
{// does not output first vertex (i) on path
if (i ==j) return;
if (kay[i][j] ==0) // no intermediate vertices on path
System.out.print(j+" ");
else {// kay[i][j] is an intermediate vertex on the path
outputPath(i, kay[il[j]);
outputPath(kaylil[jl, j);

Time Complexity Of outputPath

O(number of vertices on shortest path)

Single Source Shortest Paths with
Negative Welights

a Single-Source All-Destinations «
Shortest Paths With Negative Costs

Directed weighted graph.
Edges may have negative cost.
No cycle whose cost Is < 0.

Find a shortest path from a given source vertex
s to each of the n vertices of the digraph.

Single-Source All-Destinations
Shortest Paths With Negative Costs

« Dijkstra’s O(n?) single-source greedy algorithm
doesn’t work when there are negative-cost
edges.

 Floyd’s Theta(n?®) all-pairs dynamic-
programming algorithm does work In this case.

Bellman-Ford Algorithm

Single-source all-destinations shortest paths in
digraphs with negative-cost edges.

Uses dynamic programming.

Runs in O(n?) time when adjacency matrices
are used.

Runs in O(ne) time when adjacency lists are
used.

Decision Sequence
® W—V)

 To construct a shortest path from the source to
vertex v, decide on the max number of edges on the
path and on the vertex that comes just before v.

» Since the digraph has no cycle whose length is < 0,
we may limit ourselves to the discovery of cycle-
free (acyclic) shortest paths.

A path that has no cycle has at most n-1 edges.

Problem State
S W—WV)

* Problem state is given by (u,k), where u is the
destination vertex and k Is the max number of
edges.

 (v,n-1) Is the state in which we want the shortest
path to v that has at most n-1 edges.

Cost Function
S W—(W)

 Letd(v,k) be the length of a shortest path from the
source vertex to vertex v under the constraint that

the path has at most k edges.

 d(v,n-1) Is the length of a shortest unconstrained
path from the source vertex to vertex v.

« We want to determine d(v,n-1) for every vertex v.

Value Of d(*,0)

 d(v,0) is the length of a shortest path from the
source vertex to vertex v under the constraint that
the path has at most 0 edges.

®

 d(s,0) =0.
 d(v,0) =Infinity for v !=s,

Recurrence For d(*,k), k>0

 d(v,k) Is the length of a shortest path from the
source vertex to vertex v under the constraint that

the path has at most k edges.

* |f this constrained shortest path goes through no
edge, then d(v,k) = d(v,0).

Recurrence For d(*,k), k>0

If this constrained shortest path goes through at
least one edge, then let w be the vertex just before v
on this shortest path (note that w may be s).

© W—V)

We see that the path from the source to w must be
a shortest path from the source vertex to vertex w
under the constraint that this path has at most k-1
edges.

d(v,k) = d(w,k-1) + length of edge (w,v).

Recurrence For d(*,k), k>0

d(v,k) = d(w,k-1) + length of edge (w,v).
& W—\)
We do not know what w Is.

We can assert
= d(v,k) = min{d(w,k-1) + length of edge (w,v)}, where
the min Is taken over all w such that (w,v) Is an edge of
the digraph.
Combining the two cases considered yields:
= d(v,k) = min{d(v,0),
min{d(w,k-1) + length of edge (w,v)}}

Pseudocode To Compute d(*,*)
/[Initialize d(*,0)
d(s,0) = 0;
d(v,0) = infinity, v !=s;
/[compute d(*,k), 0 <k <n
for (intk =1; k <n; k++)
{

d(v,k) =d(v,0), 1 <=v <=n;

for (each edge (u,v))

d(v,k) = min{d(v,k), d(u,k-1) + cost(u,v)}

Complexity

"heta(n) to initialize d(*,0).
"heta(n?) to compute d(*,k) for each k > 0 when
adjacency matrix Is used.

Theta(e) to compute d(*,k) for each k > 0 when
adjacency lists are used.

Overall time is Theta(n3) when adjacency matrix is
used.

Overall time I1s Theta(ne) when adjacency lists are
used.

Theta(n?) space needed for d(*,*).

p(*,*)

 Let p(v,k) be the vertex just before vertex v
on the shortest path for d(v,k).

* p(v,0) I1s undefined.
 Used to construct shortest paths.

Source vertex i1s 1.

Example

1 2 3 4 56

|

<
o BN I~ Hepl Nep
A~
U | A | | X
| _222{V\
(@)
' | | | ©| ©
| | | | |
' | 1 | oof oo 0o
|, Toloo
| —|
N
b= =]~ X
=
| | N’
N~ N~ O =
| on] on] o N
o| ol ol o|o
O «H NMm <t

Example

1 2 3 4 56

R

<t| <
™| ™
—i| —
N
| ©
e
co| 0o
Slo
~| r~
| ©
| o
olo
< O

p(v.k)

d(v,k)

Sholrtest Path From 1 To 5

0 (6
4 6
5 ©
9
1 2 3 4 5 6 1 2345 6
5101216171918 -1612[113]4

Observations

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}
d(s,k) = 0 for all k.
If d(v,k) =d(v,k-1) for all v, then d(v,j) = d(v,k-1),
forall j >= k-1 and all v.

If we stop computing as soon as we have a d(*,k)
that i1s 1dentical to d(*,k-1) the run time becomes

= O(n3) when adjacency matrix is used.
= O(ne) when adjacency lists are used.

Observations

The computation may be done in-place.

d(v) = min{d(v), min{d(w) + length of edge (w,v)}}

Instead of

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

Following iteration k, d(v,k+1) <=d(v) <=d(v,k)
On termination d(v) = d(v,n-1).
Space requirement becomes O(n) for d(*) and

p(*).

