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6.7  Sequence Alignment in Linear Space
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Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

n Compute OPT(i, •) from OPT(i-1, •).

n No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

n Clever combination of divide-and-conquer and dynamic programming.

n Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

n Let f(i, j) be shortest path from (0,0) to (i, j).

n Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1
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
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


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Edit distance graph.

n Let f(i, j) be shortest path from (0,0) to (i, j).

n Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j
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Edit distance graph.

n Let g(i, j) be shortest path from (i, j) to (m, n).

n Can compute by reversing the edge orientations and inverting the roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







7

Edit distance graph.

n Let g(i, j) be shortest path from (i, j) to (m, n).

n Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path 

from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q
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Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

n Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n
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Theorem.  Let T(m, n) = max running time of algorithm on strings of length at most m and n. 

T(m, n) = O(mn log n).

Pf. T(m,n) is monotone nondecreasing in both m and n.

T(m,n) ≤ 2 T(m, n/2) + O(mn)

which solves to T(m,n) = O(mn log n)

Remark.  Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  Running Time Analysis Warmup
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Theorem.  Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = 

O(mn).

Pf.  (by induction on n)

n O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.

n T(q, n/2) + T(m - q, n/2) time for two recursive calls. 

n Choose constant c so that:

n Base cases: m = 2 or n = 2. 

n Inductive hypothesis:  T(m, n)  2cmn.

Sequence Alignment:  Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT
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All-Pairs Shortest Paths Problem



All-Pairs Shortest Paths

• Given an n-vertex directed weighted graph, find a shortest 
path from vertex i to vertex j for each of the n2 vertex pairs 
(i,j).
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Dijkstra’s Single Source Algorithm

• Use Dijkstra’s algorithm n times, once with each of the n 
vertices as the source vertex.
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Performance

• Time complexity is O(n3) time.

• Works only when no edge has a cost < 0.



Dynamic Programming Solution

• Time complexity is Theta(n3) time.

• Works so long as there is no cycle whose length is < 0.

• When there is a cycle whose length is < 0, some shortest paths 
aren’t finite.

▪ If vertex 1 is on a cycle whose length is -2, each time you go 
around this cycle once you get a 1 to 1 path that is 2 units 
shorter than the previous one.

• Simpler to code, smaller overheads.

• Known as Floyd’s shortest paths algorithm.



Decision Sequence

• First decide the highest intermediate vertex (i.e., largest 
vertex number) on the shortest path from i to j.

• If the shortest path is i, 2, 6, 3, 8, 5, 7, j the first decision is 
that vertex 8 is an intermediate vertex on the shortest path 
and no intermediate vertex is larger than 8.

• Then decide the highest intermediate vertex on the path 
from i to 8, and so on.

i j



Problem State

• (i,j,k) denotes the problem of finding the shortest path from vertex i
to vertex j that has no intermediate vertex larger than k.

• (i,j,n) denotes the problem of finding the shortest path from vertex i
to vertex j (with no restrictions on intermediate vertices).

i j



Cost Function

• Let c(i,j,k) be the length of a shortest path from vertex i to vertex j 
that has no intermediate vertex larger than k.

i j



c(i,j,n)

• c(i,j,n) is the length of a shortest path from vertex i to 
vertex j that has no intermediate vertex larger than n.

• No vertex is larger than n.

• Therefore, c(i,j,n) is the length of a shortest path from 
vertex i to vertex j.
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c(i,j,0)

• c(i,j,0) is the length of a shortest path from vertex i to vertex j 
that has no intermediate vertex larger than 0.

▪ Every vertex is larger than 0.

▪ Therefore, c(i,j,0) is the length of a single-edge path from 
vertex i to vertex j.
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Recurrence For c(i,j,k), k > 0

• The shortest path from vertex i to vertex j that has no intermediate 
vertex larger than k may or may not go through vertex k.

• If this shortest path does not go through vertex k, the largest 
permissible intermediate vertex is k-1. So the path length is c(i,j,k-1).

i j

< k



Recurrence For c(i,j,k) ), k > 0

• Shortest path goes through vertex k.

i j

k

• We may assume that vertex k is not repeated because no cycle 

has negative length.

• Largest permissible intermediate vertex on i to k and k to j paths 

is k-1.



Recurrence For c(i,j,k) ), k > 0

i j

k

• i to k path must be a shortest i to k path that goes through no 

vertex larger than k-1.

• If not, replace current i to k path with a shorter i to k path to get 

an even shorter i to j path.



Recurrence For c(i,j,k) ), k > 0

i j

k

• Similarly, k to j path must be a shortest k to j path that goes 

through no vertex larger than k-1.

• Therefore, length of i to k path is c(i,k,k-1), and length of k to j 

path is c(k,j,k-1).

• So, c(i,j,k) = c(i,k,k-1) + c(k,j,k-1).



Recurrence For c(i,j,k) ), k > 0

• Combining the two equations for c(i,j,k), we get c(i,j,k) = 
min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}.

• We may compute the c(i,j,k)s in the order k = 1, 2, 3, …, n.

i j



Floyd’s Shortest Paths Algorithm

for (int k = 1; k <= n; k++)

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

c(i,j,k) = min{c(i,j,k-1), 

c(i,k,k-1) + c(k,j,k-1)};

• Time complexity is O(n3).

• More precisely Theta(n3).

• Theta(n3) space is needed for c(*,*,*).



Space Reduction

• c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

• When neither i nor j equals k, c(i,j,k-1) is used only in the 
computation of c(i,j,k).

column k

row k

(i,j)

• So, c(i,j,k) can overwrite c(i,j,k-1).



Space Reduction

• c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}

• When i equals k, c(i,j,k-1) equals c(i,j,k).

▪ c(k,j,k) = min{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)}

= min{c(k,j,k-1), 0 + c(k,j,k-1)} 

= c(k,j,k-1)

• So, when i equals k, c(i,j,k) can overwrite c(i,j,k-1).

• Similarly, when j equals k, c(i,j,k) can overwrite c(i,j,k-1).

• So, in all cases c(i,j,k) can overwrite c(i,j,k-1).



Floyd’s Shortest Paths Algorithm

for (int k = 1; k <= n; k++)

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

c(i,j) = min{c(i,j), c(i,k) + c(k,j)};

• Initially, c(i,j) = c(i,j,0).

• Upon termination, c(i,j) = c(i,j,n).

• Time complexity is Theta(n3).

• Theta(n2) space is needed for c(*,*).



Building The Shortest Paths

• Let kay(i,j) be the largest vertex on the shortest path from i to j.

• Initially, kay(i,j) = 0 (shortest path has no intermediate vertex).

for (int k = 1; k <= n; k++)

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

if (c(i,j) > c(i,k) + c(k,j))

{kay(i,j) = k; c(i,j) = c(i,k) + c(k,j);}



Example

- 7    5   1    - - - -

- - - - 4    - - -

- 7    - - 9    9    - -

- 5    - - - - 16    -

- - - 4    - - - 1 

- - - - - - 1    -

2    - - - - - - 4 

- - - - - 2    4    -
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Initial Cost Matrix 

c(*,*) = c(*,*,0)



Final Cost Matrix c(*,*) = c(*,*,n)

0    6    5    1  10  13  14  11 

10   0  15    8    4   7    8    5 

12   7    0  13    9   9  10  10 

15   5  20    0    9 12  13  10 

6   9  11    4    0   3    4    1 

3   9   8     4  13   0    1    5 

2   8   7     3  12   6    0    4 

5  11 10    6  15   2    3    0 



kay Matrix

0 4 0 0 4 8 8 5 

8 0 8 5 0 8 8 5 

7 0 0 5 0 0 6 5 

8 0 8 0 2 8 8 5 

8 4 8 0 0 8 8 0 

7 7 7 7 7 0 0 7 

0 4 1 1 4 8 0 0 

7 7 7 7 7 0 6 0 



Shortest Path

Shortest path from 1 to 7.
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Build A Shortest Path

0 4 0 0 4 8 8 5 

8 0 8 5 0 8 8 5 

7 0 0 5 0 0 6 5 

8 0 8 0 2 8 8 5 

8 4 8 0 0 8 8 0 

7 7 7 7 7 0 0 7 

0 4 1 1 4 8 0 0 

7 7 7 7 7 0 6 0 

• The path is 1 4 2 5 8 6 7.

• kay(1,7) = 8

1 8 7

• kay(1,8) = 5

1 5 8 7

• kay(1,5) = 4

1 5 8 74



Build A Shortest Path

0 4 0 0 4 8 8 5 

8 0 8 5 0 8 8 5 

7 0 0 5 0 0 6 5 

8 0 8 0 2 8 8 5 

8 4 8 0 0 8 8 0 

7 7 7 7 7 0 0 7 

0 4 1 1 4 8 0 0 

7 7 7 7 7 0 6 0 

• The path is 1 4 2 5 8 6 7.

1 5 8 74

• kay(1,4) = 0

1 5 8 74

• kay(4,5) = 2

1 5 8 724

• kay(4,2) = 0

1 5 8 724



Build A Shortest Path

0 4 0 0 4 8 8 5 

8 0 8 5 0 8 8 5 

7 0 0 5 0 0 6 5 

8 0 8 0 2 8 8 5 

8 4 8 0 0 8 8 0 

7 7 7 7 7 0 0 7 

0 4 1 1 4 8 0 0 

7 7 7 7 7 0 6 0 

• The path is 1 4 2 5 8 6 7.

1 5 8 724

• kay(2,5) = 0

1 5 8 724

• kay(5,8) = 0

1 5 8 724

• kay(8,7) = 6

1 5 8 624 7



Build A Shortest Path

0 4 0 0 4 8 8 5 

8 0 8 5 0 8 8 5 

7 0 0 5 0 0 6 5 

8 0 8 0 2 8 8 5 

8 4 8 0 0 8 8 0 

7 7 7 7 7 0 0 7 

0 4 1 1 4 8 0 0 

7 7 7 7 7 0 6 0 

• The path is 1 4 2 5 8 6 7.

1 5 8 624 7

• kay(8,6) = 0

1 5 8 624 7

• kay(6,7) = 0

1 5 8 624 7



Output A Shortest Path

public static void outputPath(int i, int j)

{// does not output first vertex (i) on path

if (i == j) return;

if (kay[i][j] == 0)  // no intermediate vertices on path

System.out.print(j + " ");

else {// kay[i][j] is an intermediate vertex on the path

outputPath(i, kay[i][j]);

outputPath(kay[i][j], j);

}

}



Time Complexity Of outputPath

O(number of vertices on shortest path)



Single Source Shortest Paths with 

Negative Weights



Single-Source All-Destinations 

Shortest Paths With Negative Costs

• Directed weighted graph.

• Edges may have negative cost.

• No cycle whose cost is < 0.

• Find a shortest path from a given source vertex

s to each of the n vertices of the digraph.



Single-Source All-Destinations 

Shortest Paths With Negative Costs

• Dijkstra’s O(n2) single-source greedy algorithm 

doesn’t work when there are negative-cost 

edges.

• Floyd’s Theta(n3) all-pairs dynamic-

programming algorithm does work in this case.



Bellman-Ford Algorithm

• Single-source all-destinations shortest paths in 

digraphs with negative-cost edges.

• Uses dynamic programming.

• Runs in O(n3) time when adjacency matrices 

are used.

• Runs in O(ne) time when adjacency lists are 

used.



Decision Sequence

• To construct a shortest path from the source to 

vertex v, decide on the max number of edges on the 

path and on the vertex that comes just before v.

• Since the digraph has no cycle whose length is < 0, 

we may limit ourselves to the discovery of cycle-

free (acyclic) shortest paths.

• A path that has no cycle has at most n-1 edges.

s w v



Problem State

• Problem state is given by (u,k), where u is the 

destination vertex and k is the max number of 

edges.

• (v,n-1) is the state in which we want the shortest 

path to v that has at most n-1 edges.

s w v



Cost Function

• Let d(v,k) be the length of a shortest path from the 
source vertex to vertex v under the constraint that 
the path has at most k edges.

• d(v,n-1) is the length of a shortest unconstrained 
path from the source vertex to vertex v.

• We want to determine d(v,n-1) for every vertex v.

s w v



Value Of d(*,0)

• d(v,0) is the length of a shortest path from the 

source vertex to vertex v under the constraint that 

the path has at most 0 edges.

s

• d(s,0) = 0.

• d(v,0) = infinity for v != s.



Recurrence For d(*,k), k > 0

• d(v,k) is the length of a shortest path from the 

source vertex to vertex v under the constraint that 

the path has at most k edges.

• If this constrained shortest path goes through no 

edge, then d(v,k) = d(v,0).



Recurrence For d(*,k), k > 0

• If this constrained shortest path goes through at 
least one edge, then let w be the vertex just before v 
on this shortest path (note that w may be s).

s w v

• We see that the path from the source to w must be 

a shortest path from the source vertex to vertex w 

under the constraint that this path has at most k-1 

edges.

• d(v,k) = d(w,k-1) + length of edge (w,v).



Recurrence For d(*,k), k > 0

• We do not know what w is.

• We can assert

▪ d(v,k) = min{d(w,k-1) + length of edge (w,v)}, where 

the min is taken over all w such that (w,v) is an edge of 

the digraph.

• Combining the two cases considered yields:

▪ d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

s w v

• d(v,k) = d(w,k-1) + length of edge (w,v).



Pseudocode To Compute d(*,*)

// initialize d(*,0)

d(s,0) = 0;

d(v,0) = infinity, v != s;

// compute d(*,k), 0 < k < n

for (int k = 1; k < n; k++)

{

d(v,k) = d(v,0), 1 <= v <= n;

for (each edge (u,v))

d(v,k) = min{d(v,k), d(u,k-1) + cost(u,v)}

}



Complexity

• Theta(n) to initialize d(*,0).

• Theta(n2) to compute d(*,k) for each k > 0 when 

adjacency matrix is used.

• Theta(e) to compute d(*,k) for each k > 0 when 

adjacency lists are used.

• Overall time is Theta(n3) when adjacency matrix is 

used.

• Overall time is Theta(ne) when adjacency lists are 

used.

• Theta(n2) space needed for d(*,*).



p(*,*)

• Let p(v,k) be the vertex just before vertex v 

on the shortest path for d(v,k).

• p(v,0) is undefined.

• Used to construct shortest paths.



Example
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Example
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d(v,k) p(v,k)

1 2 3 4
0
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2
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5 6 v
k0 - - - - - - - - - - -

0 -3 1- -7 1- -- -

4

0 -3 17 27 116 48 4
0 -2 67 27 110 38 4
0 -2 66 27 110 38 4



Example
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d(v,k) p(v.k)
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Shortest Path From 1 To 5
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Observations

• d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

• d(s,k) = 0 for all k.

• If d(v,k) = d(v,k-1) for all v, then d(v,j) = d(v,k-1), 

for all j >= k-1 and all v.

• If we stop computing as soon as we have a d(*,k)

that is identical to d(*,k-1) the run time becomes

▪ O(n3) when adjacency matrix is used.

▪ O(ne) when adjacency lists are used.



Observations

• The computation may be done in-place.

d(v) = min{d(v), min{d(w) + length of edge (w,v)}}

instead of

d(v,k) = min{d(v,0),

min{d(w,k-1) + length of edge (w,v)}}

• Following iteration k, d(v,k+1) <= d(v) <= d(v,k)

• On termination d(v) = d(v,n-1).

• Space requirement becomes O(n) for d(*) and     

p(*).


