. Chapter 7
“ Network Flow

3 it i

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Maximum Flow and Minimum Cut

Max flow and min cut.

. Two very rich algorithmic problems.

. Cornerstone problems in combinatorial optimization.

. Beautiful mathematical duality.

Nontrivial applications / reductions.

u]

n]

u]

Data mining.
Open-pit mining.
Project selection.
Airline scheduling.
Bipartite matching.
Baseball elimination.
Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Egalitarian stable matching.
Security of statistical data.
Network intrusion detection.
Multi-camera scene reconstruction.
Many many more . . .

Minimum Cut Problem

Flow network.
. Abstraction for material flowing through the edges.
. 6 =(V, E) =directed graph, no parallel edges.
. Two distinguished nodes: s = source, t = sink.
. c(e) = capacity of edge e.

4 15 15 10

source (s 5 >\3>v\ 8 \;@) 10 sink

15 N ° v 10
capacity —

10

) 4
4 30 » 7

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is:

<

S

10

5

15

4

~

15

30

cap(A, B) =

15

15

10

10 (1)

10

Capacity =10 +5 + 15
=30

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is:

cap(A, B) =

10

10 (1)

10

Capacity =9 + 15 + 8 + 30
=62

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

. Foreache € E: 0« f(e) < c(e) (capacity)
. ForeachveV-{s 1t} > /@ = fe@) (conservation)

Def. The value of a flow f is:

0
@ g ®

4 0 0

10 4 4 15 15 0 10

0 4 4

©
@
©,

©

0 0
, 4 0 6 15 0
capacity — 15 10
flow — 0 0

Value = 4

® 30 @

Flows

Def. An s-t flow is a function that satisfies:

. Foreache € E: 0« f(e) < c(e) (capacity)
. ForeachveV-{s 1t} > /@ = fe@) (conservation)

Def. The value of a flow fis: wval(f) = > fle) = > fle)

e out of s e in to s

6

@ g ®
10 0 6
10 4 4 15 15 0 10
3 8 8

©, ° ® 8 © 10 ®

capacity — 15
flow — 11 1

® 30 @

Value = 24

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

9
©) g ®

10 1 9

10 4 0 15 15 0 10

4 8 9

@ > © ; ® © @

4 10

capacity — 15 40 6 150 10
flow — 14 14

Value = 28

® 30 @

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal o the amount leaving s.

val(f) = Z fle) — Z f(e)

e out of A e in to A

®

10
10

SERUAN

15

11
1 Value = 24

30 @

/

10

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal o the amount leaving s.

val(f) = Z fle) — Z f(e)

e out of A e in to A

6

6
9
0
15 0 10

10 ~ :

10
4 4

3 8

5 8

2 1

4 0

15

11\

8
10 @

10
0 10

6

Value=6+0+8-1+11

11
30 =24

V.V

1

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal o the amount leaving s.

val(f) = Z fle) — Z f(e)

e out of A e in to A

®

10
10

» w -P\®
) el
o

15

11
11 Value=10-4+8-0+10

30 > 7 =24

12

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

val(f) = > fle) — Y fle)

e out of A e in to A

Pf. wl(f) = 3 flo - Y @
e out of s e in to s
by flow conservation, all ferms — = Z (Z fle) — Z f(e))
excepf v=sareO veEA e out of v e in to v

= > fle = > fle .

e out of A e in to A

13

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 = Flow value < 30

9 ®

10 15 15 10

6 15 10

15
Capacity = 30

5 —(3) 8 (6 10)

30 @

14

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
val(f) < cap(A, B).

Plwan = 3 fo - 3 £

e out of A e in to A

< > f(e)

e out of A

<) cle)

e out of A

= cap(A,B) =

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

16

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-1 path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

1
0 0

20

10

N

10

20

Flow value = O

17

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-1 path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

1
20 X 0
20 10
30 B 20
10 20

o\é/}&zo

Flow value = 20

18

Towards a Max Flow Algorithm

Greedy algorithm.
» Start with f(e) = 0 for all edge e < E.
» Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

N locally optimality 7 global optimality

19

Residual Graph

Original edge: e =(u,v) € E.

. Flow f(e), capacity c(e).

Residual edge.
- "Undo" flow sent.
. e=(u,v)and eR = (v, u).
. Residual capacity:

_jcle)—f(e) ife€E
Cf(e)_{f(eR) if eREE

Residual graph: G¢ = (V, E;).

capacity

W 17 —()

6
N

flow

resudual capacity

@i“/g

™ residual capacity

. Residual edges with positive residual capacity.

. Ec={e:f(e)<c(e)} u {eR:c(e)>0}

20

Ford-Fulkerson Algorithm

/@‘j\ ¢
"’ 2 8 \6
@/ 10 \% 5 ®

>4
$ capacity
/

10

1o>®

21

file:///C:/Users/srinivas/Desktop/TDT4121/07demo-maxflow.ppt#1. 7. Ford-Fulkerson Demo

Augmenting Path Algorithm

forward edge

reverse edge

22

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing that the
following statements are equivalent:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

23

Proof of Max-Flow Min-Cut Theorem

(iii) = (i)
. Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.
. By definition of f, 1t ¢ A.

val(f) = Z fle) — Z f(e)

e out of A e in to A

flow value

lemma = Z c(e) -0

e out of A

— cap(4, B)

original network

24

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.
Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

25

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 X1 1 ¥XO

27

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.

28

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

. Maintain scaling parameter A.
. Let G (A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.

SN

110 102 110 102

122 170 122 170
2 \@/

6, 6, (100)

29

Capacity Scaling

30

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
. By integrality invariant, when A =1 = G,(A) = Gy.
. Upon termination of A = 1 phase, there are no augmenting paths.

31

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +log, Cl times.
Pf. Initially C <A< 2C. A decreases by a factor of 2 each iteration.

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A, — proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. L2 = v(f*) < v(f) + m (2A).
. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time. =

32

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) + m A,

. Choose A to be the set of nodes reachable from s in G4(A).

. By definition of A, s € A.

. By definition of f, T ¢ A.

val(f) = >, fle) — Y fle
/ e out of A einto A
ﬂ?gvmﬁfe > Y (c(e)-A) -
e out of A emtoA
> Z c(e) — Z A — Z A
e out of A e out of A 1to A

> cap(A,B) — mA

original network

33

