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Maximum Flow and Minimum Cut

Max flow and min cut.

. Two very rich algorithmic problems.

. Cornerstone problems in combinatorial optimization.

. Beautiful mathematical duality.

Nontrivial applications / reductions.
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Data mining.
Open-pit mining.
Project selection.
Airline scheduling.
Bipartite matching.
Baseball elimination.
Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Egalitarian stable matching.
Security of statistical data.
Network intrusion detection.
Multi-camera scene reconstruction.
Many many more . . .



Minimum Cut Problem

Flow network.
. Abstraction for material flowing through the edges.
. 6 =(V, E) =directed graph, no parallel edges.
. Two distinguished nodes: s = source, t = sink.
. c(e) = capacity of edge e.
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is:
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Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is:

cap(A, B) =
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Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.




Flows

Def. An s-t flow is a function that satisfies:

. Foreache € E: 0« f(e) < c(e) (capacity)
. ForeachveV-{s 1t} > /@ = fe@) (conservation)

Def. The value of a flow f is:
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Flows

Def. An s-t flow is a function that satisfies:

. Foreache € E: 0« f(e) < c(e) (capacity)
. ForeachveV-{s 1t} > /@ = fe@) (conservation)

Def. The value of a flow fis: wval(f) = > fle) = > fle)

e out of s e in to s
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Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal o the amount leaving s.

val(f) = Z fle) — Z f(e)
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal o the amount leaving s.

val(f) = Z fle) — Z f(e)

e out of A e in to A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal o the amount leaving s.

val(f) = Z fle) — Z f(e)

e out of A e in to A
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

val(f) = > fle) — Y fle)

e out of A e in to A

Pf. wl(f) = 3 flo - Y @
e out of s e in to s
by flow conservation, all ferms — = Z ( Z fle) — Z f(e))
excepf v=sareO veEA e out of v e in to v

= > fle = > fle .

e out of A e in to A
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Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 = Flow value < 30

9 ®

10 15 15 10

6 15 10

15
Capacity = 30

5 —(3) 8 (6 10 )

30 @

14



Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
val(f) < cap(A, B).

Plwan = 3 fo - 3 £
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Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-1 path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-1 path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
» Start with f(e) = 0 for all edge e < E.
» Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

N locally optimality 7 global optimality
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Residual Graph

Original edge: e =(u,v) € E.

. Flow f(e), capacity c(e).

Residual edge.
- "Undo" flow sent.
. e=(u,v)and eR = (v, u).
. Residual capacity:

_jcle)—f(e) ife€E
Cf(e)_{f(eR) if eREE

Residual graph: G¢ = (V, E;).

capacity
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™ residual capacity

. Residual edges with positive residual capacity.

. Ec={e:f(e)<c(e)} u {eR:c(e)>0}
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Ford-Fulkerson Algorithm
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file:///C:/Users/srinivas/Desktop/TDT4121/07demo-maxflow.ppt#1. 7.  Ford-Fulkerson Demo

Augmenting Path Algorithm

forward edge

reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing that the
following statements are equivalent:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii) = (i)
. Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.
. By definition of f, 1t ¢ A.

val(f) = Z fle) — Z f(e)

e out of A e in to A

flow value

lemma = Z c(e) -0

e out of A

— cap(4, B)

original network

24



Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.
Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =
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7.3 Choosing Good Augmenting Paths




Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 X1 1 ¥XO

27



Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.
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Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

. Maintain scaling parameter A.
. Let G (A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.
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Capacity Scaling
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Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
. By integrality invariant, when A =1 = G,(A) = Gy.
. Upon termination of A = 1 phase, there are no augmenting paths.
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Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +log, Cl times.
Pf. Initially C <A< 2C. A decreases by a factor of 2 each iteration.

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A, — proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. L2 = v(f*) < v(f) + m (2A).
. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time. =
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Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) + m A,

. Choose A to be the set of nodes reachable from s in G4(A).

. By definition of A, s € A.

. By definition of f, T ¢ A.

val(f) = >, fle) — Y fle
/ e out of A einto A
ﬂ?gvmﬁfe > Y (c(e)-A) -
e out of A emtoA
> Z c(e) — Z A — Z A
e out of A e out of A 1to A

> cap(A,B) — mA

original network

33



