
1

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Maximum Flow and Minimum Cut

Max flow and min cut.

Two very rich algorithmic problems.

Cornerstone problems in combinatorial optimization.

Beautiful mathematical duality.

Nontrivial applications / reductions.

Data mining.

Open-pit mining.

Project selection.

Airline scheduling.

Bipartite matching.

Baseball elimination.

Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Egalitarian stable matching.

Security of statistical data.

Network intrusion detection.

Multi-camera scene reconstruction.

Many many more . . .

3

Flow network.

Abstraction for material flowing through the edges.

G = (V, E) = directed graph, no parallel edges.

Two distinguished nodes: s = source, t = sink.

c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

4

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A

5

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Capacity = 9 + 15 + 8 + 30
= 62

6

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
= 28

7

Def. An s-t flow is a function that satisfies:

For each e  E: 0 ≤ f(e) ≤ c(e) (capacity)

For each v  V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0

0

0

Value = 4
0

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

8

Def. An s-t flow is a function that satisfies:

For each e  E: 0 ≤ f(e) ≤ c(e) (capacity)

For each v  V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

4

9

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

10

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

4

A

11

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A

12

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.

Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 10 - 4 + 8 - 0 + 10
= 24

4

A

13

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.

by flow conservation, all terms
except v = s are 0

14

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the

value of the flow is at most the capacity of the cut.

Cut capacity = 30  Flow value  30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

15

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have

val(f)  cap(A, B).

Pf.

Flows and Cuts

s

t

A B

7

6

8

4

16

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28  Flow value  28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

17

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

18

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

19

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality  global optimality

20

Residual Graph

Original edge: e = (u, v)  E.

Flow f(e), capacity c(e).

Residual edge.

"Undo" flow sent.

e = (u, v) and eR = (v, u).

Residual capacity:

Residual graph: Gf = (V, Ef).

Residual edges with positive residual capacity.

Ef = {e : f(e) < c(e)}  {eR : c(e) > 0}.

u v17

6

capacity

u v11

residual capacity

6

residual capacity

flow

𝑐𝑓 ⅇ = ቊ
𝑐 𝑒 − 𝑓 𝑒 𝑖𝑓 𝑒 ∈ 𝐸

𝑓 𝑒𝑅 𝑖𝑓 𝑒𝑅 ∈ 𝐸

21

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

file:///C:/Users/srinivas/Desktop/TDT4121/07demo-maxflow.ppt#1. 7. Ford-Fulkerson Demo

22

Augmenting Path Algorithm

Augment(f, c, P) {

b  bottleneck(P)

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge

23

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no

augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the

max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing that the

following statements are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).

(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i)  (ii) This was the corollary to weak duality lemma.

(ii)  (iii) We show contrapositive.

Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

24

Proof of Max-Flow Min-Cut Theorem

(iii)  (i)

Let f be a flow with no augmenting paths.

Let A be set of vertices reachable from s in residual graph.

By definition of A, s  A.

By definition of f, t  A.

original network

s

t

A B

25

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)

remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*)  nC iterations.

Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. ▪

7.3 Choosing Good Augmenting Paths

27

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

28

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

Some choices lead to exponential algorithms.

Clever choices lead to polynomial algorithms.

If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

Can find augmenting paths efficiently.

Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

Max bottleneck capacity.

Sufficiently large bottleneck capacity.

Fewest number of edges.

29

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.

Don't worry about finding exact highest bottleneck path.

Maintain scaling parameter .

Let Gf () be the subgraph of the residual graph consisting of only

arcs with capacity at least .

110

s

4

2

t
1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

30

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

foreach e  E f(e)  0

  smallest power of 2 greater than or equal to C

Gf  residual graph

while (  1) {

Gf()  -residual graph

while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)

update Gf()

}

   / 2

}

return f

}

31

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.

By integrality invariant, when  = 1  Gf() = Gf.

Upon termination of  = 1 phase, there are no augmenting paths. ▪

32

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log2 C times.

Pf. Initially C   < 2C.  decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the

value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.

Let f be the flow at the end of the previous scaling phase.

L2  v(f*)  v(f) + m (2).

Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

33

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a -scaling phase. Then value

of the maximum flow is at most v(f) + m .

Pf. (almost identical to proof of max-flow min-cut theorem)

We show that at the end of a -phase, there exists a cut (A, B)

such that cap(A, B)  v(f) + m .

Choose A to be the set of nodes reachable from s in Gf().

By definition of A, s  A.

By definition of f, t  A.

original network

s

t

A B

