
1

Chapter 8

NP and Computational
Intractability

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



8.3  Definition of NP



3

Decision Problems

Decision problem.

X is a set of strings.

Instance:  string s.

Algorithm A solves problem X:  A(s) = yes iff s  X.

Polynomial time.  Algorithm A runs in poly-time if for every string s, 

A(s) terminates in at most p(|s|) "steps", where p() is some polynomial. 

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }

Algorithm.  [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s



4

Definition of P

P.  Decision problems for which there is a poly-time algorithm.

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school 

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT-
DISTANCE

Is the edit distance between 
x and y less than 5?

Dynamic 
programming

niether 

neither

acgggt 

ttttta

LSOLVE
Is there a vector x that 

satisfies Ax = b?
Gauss-Edmonds 

elimination



5

NP

Certification algorithm intuition.

Certifier views things from "managerial" viewpoint.

Certifier doesn't determine whether s  X  on its own;

rather, it checks a proposed proof t that s  X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,  

s  X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and

|t|  p(|s|) for some polynomial p().

"certificate" or "witness"



6

Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate 

exists iff s is composite.  Moreover |t|  |s|.

Certifier.  

Instance.  s = 437,669.

Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541  809

boolean C(s, t) {

if (t  1 or t  s)

return false

else if (s is a multiple of t)

return true

else 

return false

}



7

Certifiers and Certificates:  3-Satisfiability

SAT. Given a CNF formula , is there a satisfying assignment?

Certificate.  An assignment of truth values to the n Boolean variables.

Certifier.  Check that each clause in  has at least one true literal.

Ex.

Conclusion.  SAT is in NP.



8

Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 

once, and that there is an edge between each pair of adjacent nodes in 

the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t



9

P, NP, EXP

P.       Decision problems for which there is a poly-time algorithm.

NP.    Decision problems for which there is a poly-time certifier.

EXP.  Decision problems for which there is an exponential-time algorithm.

Claim.  P   NP.

Pf.  Consider any problem X in P.

By definition, there exists a poly-time algorithm A(s) that solves X.

Certificate: t = , certifier C(s, t) = A(s). ▪

Claim.  NP   EXP.

Pf.  Consider any problem X in NP.

By definition, there exists a poly-time certifier C(s, t) for X.

To solve input s, run C(s, t) on all strings t with |t|  p(|s|).

Return yes, if C(s, t) returns yes for any of these. ▪



10

The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …

If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P  NP If  P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse economy)



8.4  NP-Completeness



12

Polynomial Transformation

Def.  Problem X polynomial reduces (Cook) to problem Y if arbitrary 

instances of problem X can be solved using:

Polynomial number of standard computational steps, plus

Polynomial number of calls to oracle that solves problem Y.

Def.  Problem X polynomial transforms (Karp) to problem Y if given any 

input x to X, we can construct an input y such that x is a yes instance 

of X iff y is a yes instance of Y. 

Note.  Polynomial transformation is polynomial reduction with just one 

call to oracle for Y, exactly at the end of the algorithm for X.  Almost 

all previous reductions were of this form. 

Open question.  Are these two concepts the same?

we require |y| to be of size polynomial in |x|

we abuse notation  p and blur distinction



13

NP-Complete

NP-complete.  A problem Y in NP with the property that for every 

problem X in NP, X  p Y.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in 

poly-time iff P = NP.

Pf.   If P = NP then Y can be solved in poly-time since Y is in NP.

Pf.   Suppose Y can be solved in poly-time.

Let X be any problem in NP.  Since X  p Y, we can solve X in

poly-time. This implies NP   P.

We already know P   NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete problems?



14





 





1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT

gates, is there a way to set the circuit inputs so that the output is 1?



15

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Pf.  (sketch)

Any algorithm that takes a fixed number of bits n as input and 

produces a yes/no answer can be represented by such a circuit.

Moreover, if algorithm takes poly-time, then circuit is of poly-size.

Consider some problem X in NP.  It has a poly-time certifier C(s, t).

To determine whether s is in X, need to know if there exists a 

certificate t of length p(|s|) such that C(s, t) = yes.

View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) 

and convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s

– remaining p(|s|) bits represent bits of t

Circuit K is satisfiable iff C(s, t) = yes.



16





u-v



1

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)







u-w

0



v-w

1



u

?



v

?



w

?





set of size 2?

both endpoints of some edge have been chosen?

independent set?

Example

Ex.  Construction below creates a circuit K whose inputs can be set so 

that K outputs true iff graph G has an independent set of size 2.

u

v w

G = (V, E), n = 3



17

Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,

others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

Step 1.  Show that Y is in NP.

Step 2.  Choose an NP-complete problem X.

Step 3.  Prove that X  p Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP 

with the property that X  P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W   P  X    P Y.

By transitivity, W  P Y. 

Hence Y is NP-complete.  ▪ by assumptionby definition of
NP-complete



18

3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.

Pf.  Suffices to show that CIRCUIT-SAT  P 3-SAT since 3-SAT is in NP.

Let K be any circuit.

Create a 3-SAT variable xi for each circuit element i.

Make circuit compute correct values at each node:

– x2 =  x3  add 2 clauses: x2  x3,  x2   x3

– x1 = x4  x5    add 3 clauses: (x1  x4), (x1  x5), (x1  x4  x5)

– x0 = x1  x2    add 3 clauses: ( x0  x1), (x0  x2), (x0  x1  x2)

Hard-coded input values and output value.

– x5 = 0   add 1 clause:  x5

– x0 = 1   add 1 clause: x0

Final step:  turn clauses of length < 3 into

clauses of length exactly 3.  ▪







0 ? ?

output

x0

x2x1

x3x4x5



19

Observation.  All problems below are NP-complete and polynomial 

reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness



20

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

Packing problems:  SET-PACKING, INDEPENDENT SET.

Covering problems:  SET-COVER, VERTEX-COVER.

Constraint satisfaction problems:  SAT, 3-SAT.

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3D-MATCHING 3-COLOR.

Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism, Nash equilibrium.



21

Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 

Prime intellectual export of CS to other disciplines.

6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"

Broad applicability and classification power.

"Captures vast domains of computational, scientific, mathematical 

endeavors, and seems to roughly delimit what mathematicians and 

scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

1926:  Ising introduces simple model for phase transitions.

1944:  Onsager solves 2D case in tour de force.

19xx:  Feynman and other top minds seek 3D solution.

2000:  Istrail proves 3D problem NP-complete.



22

More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.

Biology:  protein folding.

Chemical engineering:  heat exchanger network synthesis.

Civil engineering:  equilibrium of urban traffic flow.

Economics:  computation of arbitrage in financial markets with friction.

Electrical engineering:  VLSI layout. 

Environmental engineering:  optimal placement of contaminant sensors.

Financial engineering:  find minimum risk portfolio of given return.

Game theory:  find Nash equilibrium that maximizes social welfare.

Genomics:  phylogeny reconstruction.

Mechanical engineering:  structure of turbulence in sheared flows.

Medicine:  reconstructing 3-D shape from biplane angiocardiogram.

Operations research:  optimal resource allocation. 

Physics:  partition function of 3-D Ising model in statistical mechanics.

Politics:  Shapley-Shubik voting power.

Pop culture:  Minesweeper consistency.

Statistics:  optimal experimental design.



8.9  co-NP and the Asymmetry of NP



24

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1.  SAT vs. TAUTOLOGY.

Can prove a CNF formula is satisfiable by giving such an assignment.

How could we prove that a formula is not satisfiable? 

Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.

Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.

How could we prove that a graph is not Hamiltonian?

Remark.  SAT is NP-complete and SAT  P TAUTOLOGY, but how do we 

classify TAUTOLOGY?

not even known to be in NP



25

NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.

Ex.  SAT, HAM-CYCLE, COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem 

with the yes and no answers reversed.

Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }

Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.

Ex.  TAUTOLOGY, NO-HAM-CYCLE, PRIMES.



26

Fundamental question.  Does NP = co-NP?

Do yes instances have succinct certificates iff no instances do?

Consensus opinion:  no.

Theorem.  If NP  co-NP, then P  NP.

Pf idea.

P is closed under complementation.

If P = NP, then NP is closed under complementation.

In other words, NP = co-NP.

This is the contrapositive of the theorem.

NP = co-NP ?



27

Good Characterizations

Good characterization.  [Edmonds 1965]   NP   co-NP.

If problem X is in both NP and co-NP, then:

– for yes instance, there is a succinct certificate

– for no instance, there is a succinct disqualifier

Provides conceptual leverage for reasoning about a problem.

Ex.  Given a bipartite graph, is there a perfect matching.

If yes, can exhibit a perfect matching.

If no, can exhibit a set of nodes S such that |N(S)| < |S|.



28

Good Characterizations

Observation.  P  NP   co-NP.

Proof of max-flow min-cut theorem led to stronger result that max-

flow and min-cut are in P.

Sometimes finding a good characterization seems easier than 

finding an efficient algorithm.

Fundamental open question.  Is P = NP   co-NP?

Mixed opinions.

Many examples where problem found to have a non-trivial good 

characterization, but only years later discovered to be in P.

– linear programming [Khachiyan, 1979]

– primality testing [Agrawal-Kayal-Saxena, 2002]

Fact.  Factoring is in NP   co-NP, but not known to be in P.

if poly-time algorithm for factoring,
can break RSA cryptosystem



Basic genres.

▪ Packing problems:  SET-PACKING, INDEPENDENT SET.

▪ Covering problems:  SET-COVER, VERTEX-COVER.

▪ Constraint satisfaction problems:  SAT, 3-SAT.

▪ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

▪ Partitioning problems: 3D-MATCHING, 3-COLOR.

▪ Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems



30

Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 

simple cycle  that contains every node in V.

YES:  vertices and faces of a dodecahedron.



31

Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 

simple cycle  that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.



32

Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 

directed cycle  that contains every node in V?

Claim.  DIR-HAM-CYCLE  P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 

with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'

v vout



33

Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  

Suppose G has a directed Hamiltonian cycle .

Then G' has an undirected Hamiltonian cycle (same order).

Pf.  

Suppose G' has an undirected Hamiltonian cycle '.

' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 

…, B, R, G, B, R, G, B, R, G, B, … 

Blue nodes in ' make up directed Hamiltonian cycle  in G, or

reverse of one.   ▪



34

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT  P DIR-HAM-CYCLE.

Pf.   Given an instance  of 3-SAT, we construct an instance of DIR-

HAM-CYCLE that has a Hamiltonian cycle iff  is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 

correspond in a natural way to 2n possible truth assignments.



35

3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.

Construct G to have 2n Hamiltonian cycles.

Intuition:  traverse path i from left to right   set variable xi = 1.

s

t

3k + 3

x1

x2

x3



36

3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.

For each clause:  add a node and 6 edges.

s

t

clause nodeclause node
3211 VV xxxC = 3212 VV xxxC =

x1

x2

x3



37

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  

Suppose 3-SAT instance has satisfying assignment x*.

Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i from left to right

– if x*i = 0, traverse row i from right to left

– for each clause Cj , there will be at least one row i in which we are 

going in "correct" direction to splice node Cj into tour



38

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  

Suppose G has a Hamiltonian cycle .

If  enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are connected by an 

edge e in G

– removing Cj from cycle, and replacing it with edge e yields 

Hamiltonian cycle on G - { Cj  }

Continuing in this way, we are left with Hamiltonian cycle ' in

G - { C1 , C2 ,  . . . , Ck }.

Set x*i = 1 iff ' traverses row i left to right.

Since  visits each clause node Cj , at least one of the paths is 

traversed in "correct" direction, and each clause is satisfied.   ▪



39

Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 

path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 

path of length at least k edges?

Claim.  3-SAT  P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show HAM-CYCLE  P LONGEST-PATH.



40

The Longest Path t

Lyrics.  Copyright © 1988 by Daniel J. Barrett.

Music.  Sung to the tune of The Longest Time by Billy Joel.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final. 



41

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 

there a tour of length  D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu



42

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 

there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu



43

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 

there a tour of length  D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu



44

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 

there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu



45

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 

there a tour of length  D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 

that contains every node in V?

Claim.  HAM-CYCLE  P TSP.

Pf.

Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function d(u,v) = 1 if (u,v) is in E, and d(u,v) = 2 otherwise.

TSP instance has tour of length  n iff G is Hamiltonian.  ▪

Remark.  TSP instance in reduction satisfies -inequality.



Basic genres.

▪ Packing problems:  SET-PACKING, INDEPENDENT SET.

▪ Covering problems:  SET-COVER, VERTEX-COVER.

▪ Constraint satisfaction problems:  SAT, 3-SAT.

▪ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

▪ Partitioning problems:  3D-MATCHING, 3-COLOR.

▪ Numerical problems:  SUBSET-SUM, KNAPSACK.

8.6  Partitioning Problems



47

3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of 

the possible courses and times each instructor is willing to teach, is it 

possible to make an assignment so that all courses are taught at 

different times, by different instructors?

Instructor Course Time

Wayne COS 423 MW 11-12:20

Wayne COS 423 TTh 11-12:20

Wayne COS 226 TTh 11-12:20

Wayne COS 226 MW 11-12:20

Tardos COS 523 TTh 3-4:20

Tardos COS 423 TTh 11-12:20

Tardos COS 423 TTh 3-4:20

Kleinberg COS 226 TTh 3-4:20

Kleinberg COS 226 MW 11-12:20

Kleinberg COS 423 MW 11-12:20



48

3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set 

T  X  Y  Z of triples, does there exist a set of n triples in T such 

that each element of X  Y  Z is in exactly one of these triples?

Claim.  3-SAT  P 3D-matching.

Pf.  Given an instance  of 3-SAT, we construct an instance of 3D-

matching that has a perfect matching iff  is satisfiable.



49

3-Dimensional Matching

Construction.  (part 1)

Create gadget for each variable xi with 2k core and tip elements.

No other triples will use core elements.

In gadget i, 3D-matching must use either both grey triples or both 

blue ones.

x1 x3x2

core

set xi = true set xi = false

number of clauses

k = 2 clauses
n = 3 variables

true

false

clause 1 tips



50

3-Dimensional Matching

Construction.  (part 2)

For each clause Cj create two elements and three triples.

Exactly one of these triples will be used in any 3D-matching.

Ensures any 3D-matching uses either (i) grey core of x1 or (ii) blue 

core of x2 or (iii) grey core of x3.

x1 x3x2

clause 1 tips core

  

 

C j  =  x1  x2  x3each clause assigned
its own 2 adjacent tips

true

false

clause 1 gadget



51

3-Dimensional Matching

Construction.  (part 3)

For each tip, add a cleanup gadget.

x1 x3x2

core

cleanup gadget

true

false

clause 1 gadget

clause 1 tips



52

3-Dimensional Matching

Claim.  Instance has a 3D-matching iff  is satisfiable.

Detail.  What are X, Y, and Z?  Does each triple contain one element 
from each of X, Y, Z?

x1 x3x2

core

cleanup gadget

true

false

clause 1 gadget

clause 1 tips



53

3-Dimensional Matching

Claim.  Instance has a 3D-matching iff  is satisfiable.

Detail.  What are X, Y, and Z?  Does each triple contain one element 
from each of X, Y, Z?

x1 x3x2

core

cleanup gadget

clause 1 gadget

clause 1 tips



Basic genres.

▪ Packing problems:  SET-PACKING, INDEPENDENT SET.

▪ Covering problems:  SET-COVER, VERTEX-COVER.

▪ Constraint satisfaction problems:  SAT, 3-SAT.

▪ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

▪ Partitioning problems:  3D-MATCHING, 3-COLOR.

▪ Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring



55

3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 

color the nodes red, green, and blue so that no adjacent nodes have the 

same color?

yes instance



56

Register Allocation

Register allocation.  Assign program variables to machine register so 

that no more than k registers are used and no two program variables 

that are needed at the same time are assigned to the same register.

Interference graph.  Nodes are program variables names, edge

between u and v if there exists an operation where both u and 

v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem iff 

interference graph is k-colorable.

Fact.  3-COLOR  P k-REGISTER-ALLOCATION for any constant k  3.



57

3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR that 

is 3-colorable iff  is satisfiable.

Construction.

i. For each literal, create a node.

ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.

iii. Connect each literal to its negation.

iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next



58

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

(ii) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.

T

B

F

 

x1

 

x
1

 

x2

 

x
2

 

xn

 

x
n

 

x3

 

x
3

true false

base



59

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

(ii) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.

(iv) ensures at least one literal in each clause is T.

T F

B

 

x1

 

x
2

 

x3   

 

Ci = x1 V x2 V x3

6-node gadget

true false



60

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

(ii) ensures each literal is T or F.

(iii) ensures a literal and its negation are opposites.

(iv) ensures at least one literal in each clause is T.

  

 

Ci = x1 V x2 V x3

T F

B

 

x1

 

x
2

 

x3

not 3-colorable if all are red

true false

contradiction



61

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose 3-SAT formula  is satisfiable.

Color all true literals T.

Color node below green node F, and node below that B.

Color remaining middle row nodes B.

Color remaining bottom nodes T or F as forced.  ▪

T F

B

 

x1

 

x
2

 

x3

a literal set to true in 3-SAT assignment

  

 

Ci = x1 V x2 V x3

true false



Basic genres.

▪ Packing problems:  SET-PACKING, INDEPENDENT SET.

▪ Covering problems:  SET-COVER, VERTEX-COVER.

▪ Constraint satisfaction problems:  SAT, 3-SAT.

▪ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

▪ Partitioning problems:  3-COLOR, 3D-MATCHING.

▪ Numerical problems: SUBSET-SUM, KNAPSACK.

8.8  Numerical Problems



63

Subset Sum

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 

there a subset that adds up to exactly W?

Ex:  { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 },  W = 3754.

Yes.  1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in 

binary. Polynomial reduction must be polynomial in binary encoding.

Claim.  3-SAT  P SUBSET-SUM.

Pf.  Given an instance  of 3-SAT, we construct an instance of SUBSET-

SUM that has solution iff  is satisfiable.



64

Subset Sum

Construction.  Given 3-SAT instance  with n variables and k clauses, 

form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim.   is satisfiable iff there exists a subset that sums to W.

Pf.  No carries possible.

dummies to get
clause columns
to sum to 4

x2

x1

x3

0 0 0 0 1 0

0 0 0 2 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 0 1 0 0

1 0 0 1 0 1

1 0 0 0 1 0

0 0 1 1 1 0

x1 x2 x3 C1 C2 C3

0 0 0 0 0 2

0 0 0 0 0 1

0 0 0 0 2 0

1 1 1 4 4 4

 x1

 x2

 x3

W

10

200

100

1,001

10,011

10,100

100,101

100,010

1,110

2

1

20

111,444



65

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time 

ti, release time ri, and deadline di, is it possible to schedule all jobs on a 

single machine such that job i is processed with a contiguous slot of ti

time units in the interval [ri, di ] ? 

Claim.  SUBSET-SUM  P SCHEDULE-RELEASE-TIMES.

Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,

Create n jobs with processing time ti = wi, release time ri = 0, and no 

deadline (di =  1 + j wj).

Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0


