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Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should T do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
. Solve problem to optimality.
. Solve problem in polynomial time.
. Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that
arise in practice.



10.1 Finding Small Vertex Covers




Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S — V such that |S| <k, and for each edge (u, v)
eitherue S,orv e S, or both.

k=4
5={3,6,7,10}
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Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1),
. Try all C(n, k) = O(n¥) subsets of size k.
. Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2% k n).

Ex. n=1,000, k = 10.
Brute. knk! =1034 = infeasible.
Better. 2kkn =107 = feasible.

Remark. If kis a constant, algorithm is poly-time; if k is a small
constant, then it's also practical.



Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size < k iff
at least one of G — {u} and G — { v} has a vertex cover of size < k-1.

delete v and all incident edges

Pf. =
. Suppose G has a vertex cover S of size < k.
. S contains either u or v (or both). Assume it contains u.
. S—{u}isavertex cover of G-{u}.

Pf. <
. Suppose S is a vertex cover of G —{u} of size < k-1.
. Then S U {u}is avertex cover of G. =

Claim. If G has a vertex cover of size k, it has < k(n-1) edges.
Pf. Each vertex covers at most n-1 edges. =«



Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of
size < k in O(2% kn) time.

boolean Vertex-Cover (G, k) {
if (G contains no edges) return true
if (G contains 2 kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover (G - {u}, k-1)
b = Vertex-Cover (G - {v}, k-1)
return a or b

Pf.
. Correctness follows previous two claims.
. There are < 2k nodes in the recursion tree; each invocation takes
O(kn) time. =



Finding Small Vertex Covers: Recursion Tree

cn if k=1

_ — T(n, k)< 2ckn
2T(n,k=1) +ckn ifk>1

T(n, k)s{



10.2 Solving NP-Hard Problems on Trees




Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality
subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has

at least two leaf nodes.
) O\@
degree = 1
)
Key observation. If vis aleaf, there exists G
LD\@

a maximum size independent set containing v.

Pf. (exchange argument)
. Consider a max cardinality independent set S.
. Ifve S,we're done.
. Ifug Sandv ¢ S, then S U {v}is independent = S not maximum.
. IFue Sandv ¢ S,thenSu {v}-{u}isindependent.
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Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality
independent set in forests (and hence trees).

Independent-Set-In-A-Forest(F) {

S « ¢

while (F has at least one edge) {
Let e = (u, v) be an edge such that v is a leaf
Add v to S

Delete from F nodes u and v, and all edges
incident to them.

}

return S

Pf. Correctness follows from the previous key observation.

Remark. Can implement in O(n) time by considering nodes in postorder.
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Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights w, > O,
find an independent set S that maximizes =,_s w,.

Observation. If (u, v)is an edge such that v is a leaf node, then either
OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
» OPT,, (u) = max weight independent set
rooted at u, containing u.
» OPT,,(u) = max weight independent set
rooted at u, not containing u.

OPT,(u) = w,+ 3 OPT,(v)

u
v € children(u)

OPT, (u) = > max {OPT,,(v), OPT,,.(v)}

v € children(u)

children(u) = { v, w, x }
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Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm finds a maximum
weighted independent set in trees in O(n) time.

Weighted-Independent-Set-In-A-Tree(T) {
Root the tree at a node r
foreach (node u of T in postorder) {

if (u is a leaf) { I
M; [u] = w, ensures a node is visited after
M. [u] =0 all its children
}
else {
Min [u] = Zvechildren(u) Mout [V] + Wv
Mout [u] = z"vechildren(u) max (Mout [V] 4 Min [V] )

}
}

return max(M; [r], M_.[r])

Pf. Takes O(n) time since we visit nodes in postorder and examine each
edge exactly once. =«



10.3 Circular Arc Coloring




Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM). Allows m communication
streams (arcs) to share a portion of a fiber optic cable, provided they
are tfransmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.
Brute force. Can determine if

k colors suffice in O(k™) time by

trying all k-colorings.

Goal. O(f(k)) - poly(m, n) on rings.
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Review: Interval Coloring

Interval coloring. Greedy algorithm finds coloring such that number of
colors equals depth of schedule.

N maximum number of streams at one location

Circular arc coloring.
- Weak duality: number of colors > depth.
. Strong duality does not hold.

max depth = 2
min colors = 3
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(Almost) Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring. Given a set of n arcs with depth d <k,
can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v, and v,. The arcs
can be colored with k colors iff the intervals can be colored with k
colors in such a way that "sliced" arcs have the same color.

colorsof a', b', and ¢' must correspond
to colors of a", b", and ¢"

Vo Vi \Z V3 Vg4 Vo
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Circular Arc Coloring: Dynamic Programming Algorithm

Dynamic programming algorithm.

[u}

u}

[u}

Assign distinct color to each interval which begins at cut node v,
At each node v;, some intervals may finish, and others may begin.
Enumerate all k-colorings of the intervals through v, that are
consistent with the colorings of the intervals through v, ;.

The arcs are k-colorable iff some coloring of intervals ending at cut
hode v, is consistent with original coloring of the same intervals.

yes

.
OB
. OB

r n
L C I L e 1 L a I
I L] | 1 | I
r n
L b 1 L f 1 L b 1
I 1 L 1 L ]
a’ d c”
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Circular Arc Coloring: Running Time

Running time. O(K! - n).
. n phases of the algorithm.
. Bottleneck in each phase is enumerating all consistent colorings.
. There are at most k intervals through v;, so there are at most k!
colorings to consider.

Remark. This algorithm is practical for small values of k (say k = 10)
even if the number of nodes n (or paths) is large.
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Vertex Cover in Bipartite Graphs




Vertex Cover

Vertex cover. Given an undirected graph G = (V, E), a vertex cover is a
subset of vertices S < V such that for each edge (u, v) € E, either
uUue Sorve Sorboth.

5={3,4,5,1,2"})
|S| =5
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Vertex Cover

Weak duality. Let M be a matching, and let S be a vertex cover.

Then, |M| < |S].

Pf. Each vertex can cover at most one edge in any matching.
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Vertex Cover: Konig-Egervary Theorem

Konig-Egervary Theorem. In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

s*=({3,1',2'5"}
|5*| = 4

M* = 1-1',2-2", 3-3', 5-5'
|M*| = 4
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Vertex Cover: Proof of Konig-Egervdry Theorem

Konig-Egervary Theorem. In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

. Suffices to find matching M and cover S such that |M| = |S].

. Formulate max flow problem as for bipartite matching.

. Let M be max cardinality matching and let (A, B) be min cut.
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Vertex Cover: Proof of Konig-Egervdry Theorem

Konig-Egervary Theorem. In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

u}

[u}

[u}

u}

Suffices to find matching M and cover S such that |M| = |S].
Formulate max flow problem as for bipartite matching.

Let M be max cardinality matching and let (A, B) be min cut.
DefineL,=LnA,Lg=LnB,R,=RNA,Rz=RNB.

Claim1. S=LguU R, is avertex cover.
- consider (u,v) € E
- u € Ly, v e Ry impossible since infinite capacity
- thus, either u € Lyor v € R, or both

Claim 2. |S]| = |[M].

- max-flow min-cut theorem = |[M| = cap(A, B)

- only edges of form (s, u) or (v, t) contribute to cap(A, B)
- M| = cap(A, B) = ILg| + R,| = IS].
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