Assignment Lecture

14. September 2022

Content

e Assignment 1

O

Solution

e Assignment 2

O

o O O O O

Representing graphs
BFS
DFS
Topological ordering

Tema Tema

Task 1a

a) Explaining stable matching

Explain in your own words, what it means for a matching to be stable.

Solution:
A matching is considered to be stable when there does not exist a pairing (m,w) where m and w
prefer each other to their current matching.

1b

b) Consider a version of the SMP in which we are attempting to match schools with
students. Prove the following statement:

Consider the case in which we have a high school student and a university that have each other
highest on their respective preference lists. i.e the student s prefers university u the most. And
the university u prefers student s the most. Then in every S of this occurrence, the pair (s, u)
belongs to S.

Solution:

This statement goes hand in hand with the concept of stability: if we propose a case where the
student s is matched up with some other university v’. And the university u is matched up with
some other student s’. This would lead to the matchings not being stable, as v and s would gladly
leave their pairings to match up with each other, proving the statement.

2a

Task 2 Asymptotic growth rate

a) Sort the following list of functions in ascending order of growth rate. Meaning if
function f(n) follows function g(n), then f(n) is O(g(n)), explain your answer.

g1(n) = n*logn

g2(n) =n!
g3(n) =400
gs(n) =logn
g5(n) = 3n

gs(n) = 5n3

2a

Task 2 Asymptotic growth rate

a) Sort the following list of functions in ascending order of growth rate. Meaning if
function f(n) follows function g(n), then g(n) = O(f(n) explain your answer.

g91(n) =n*logn

g2(n) =n!
g3(n) =400
gs(n) =logn
g5(n) = 3n

gs(n) = 5n3

2a

= O(n?logn
Remove noise and add 91 (g)

asymptotic notation g2 = O(n!)
g3 will be simplified to ©(1) as it runs in constant time.
94 = O(logn)
Then we remove the constants from g5 and gg :
95 = ©O(n)
g6 = O(n°)

Sort 93 <94 < 95 <91 <Gs < g2

2b

b) Match the following expressions so that there is an f;(n) = ©(g;(n)):

filn) =n®+12n+4
fa(n) =4(1gn)
fa(n) =n?-42n

fa(n) =n+2
g1(n) =1lgn +45
g2(n) =5n—3
g3(n) :3n3

g4(n) = (n+5)°

2b

Again: remove noise and
add asymptotic notation

fi(n) =n?+12n+4
fa(n) = 4(Ign)
f3(n) =n?-42n

fa(n) =n+2
g1(n) =1gn+45
g2(n) =5n—3
g3(n) = 3n?

ga(n) = (n+5)*

fr = 6(n?)
fo = 6O(logn)
f3 =6(n’)
fa=0(n)

g1 = O(logn)
g2 = ©(n)

g3 = ©(n?)
94 = ©(n?)

2b

Again: remove noise and
add asymptotic notation

Resulting match:

fi(n) =n?+12n+4 fi = 0(n?)
fa(n) = 4(lgn) fo = 6O(logn)
f3(n) =n?-42n fz = 0(nd)
fa(n) =n+2 fa=06(n)
g1(n) =1gn+45 g1 = O(logn)
g2(n) =5n—3 g2 = O(n)
g3(n) = 3n? g3 = O(n?)
g4(n) = (n+5)° g4 = O(n?)

[(f1,94), (f2,91), (f3, 93)7 (f4,92)]

2C

c) Consider the following expressions:

f(n) =1g(n'®7)
g(n) = lg(7'*")

Which of the listed asymptotic growth rates could represent the relationship between the functions,
explain why or why not for each:

f(n) = Q(g(n))
f(n) = O(g(n))
f(n) = ©(g(n))

2C

lg 7
Rewrite the expression We have that f (n) = lg(n &)

2C

lg 7
Rewrite the expression We have that f (n) = lg(’n, &)

lg7lgn=1g 78" = g(n).

2C

Rewrite the expression We have that f (n) = lg(nlg7)

lg7lgn =1g7'¢™ = g(n).

f(n) = ©(g(n))

2d

d) Simplify the following asymptotic expression, without the loss of precision:

O(n%) + O(n)

2d

d) Simplify the following asymptotic expression, without the loss of precision:

O(n%) + O(n)

Asymptotically
tight

2d

d) Simplify the following asymptotic expression, without the loss of precision:

O(n%) + O(n)

Asymptotically
tight

Upper bound

2d

d) Simplify the following asymptotic expression, without the loss of precision:

O(n%) + O(n)

Asymptotically
tight

Upper bound

2d

d) Simplify the following asymptotic expression, without the loss of precision:

T

3a

ArraySum (List):
n = len(List)

currentSum = 0
for i in range(n):
currentSum = List[i]
for j in range (i+1, n):
currentSum = CurrentSum + List[j]
Sum[i] [j] = currentSum

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) ' Constant time |
currentSum = 0
for i in range(n):
currentSum = List[i]
for j in range (i+1, n):
currentSum = CurrentSum + List[j]
Sum[i] [j] = currentSum

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) ' Constant time |
currentSum = 0 ' Constant time |
for i in range(n):
currentSum = List[i]
for j in range (i+1, n):
currentSum = CurrentSum + List[j]
Sum[i] [j] = currentSum

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) ' Constant time |
currentSum = 0 ' Constant time |
for i in range(n): 'Runs ntimes |
currentSum = List[i]
for j in range (i+1, n):
currentSum = CurrentSum + List[j]

Sum[i] [j] = currentSum

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) ' Constant time |
currentSum = 0 ' Constant time |
for i in range(m): Runsntimes |
currentSum = List [i] ' Constant time |
for j in range (i+1, n):
currentSum = CurrentSum + List[j]

Sum[i] [j] = currentSum

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) ' Constant time |
currentSum = 0 ' Constant time |
for i in range(m): Runsntimes |
currentSum = List [i] ' Constant time |
for j in range (i+1, n): Runs n-i times |
currentSum = CurrentSum + List[j]

Sum[i] [j] = currentSum

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) ' Constant time |
currentSum = 0 ' Constant time |
for i in range(m): Runsntimes |
currentSum = List [i] ' Constant time |
for j in range (i+1, n): ' Runs n-i times |
currentSum = CurrentSum + List [jConstanttimeny
_ Sum[il[lj] = currentSum [ConSiantfimen

Analyse the runtime of the algorithm arraySum

3a

ArraySum (List) :

n = len(List) [Constant time |
currentSum = O [Constant time |
for i in range(n): 'Runs ntimes |
currentSum = List[i] [Constant time |
for j in range (i+1, n): ' Runs n-i times |
currentSum = CurrentSum + List [j[Constanttime |
Sum[i][j] = currentSum | Constant time |

Analyse the runtime of the algorithm arraySum

3a

for i in range(n): _

3a

for i in range(n):

for j in range (i+1, n):

i=0-1..(n—1)=(n—-1)iterations
i=1-2..(n—1) = (n-2)iterations

i=n—-1->(Mn-1)..(n—1) = 1iteration

3a

for i in range(n):

for j in range (i+1, n):

i=0-1..(n—1) = (n—1) iterations A n-D+n-2)+--+2+1=
i=1-2..(n—1) = (n-2)iterations

i=n—-1->(Mn-1)..(n—1) = 1iteration

3a

for i in range(n):

for j in range (i+1l, n):

i=0->1..(n—1) = (n—1) iterations A m-1)+n-2)++2+1=

i=1-2..(n—1) = (n—2)iterations . (n—1+1)+(n—2+2)+~--+(n—E+E)=
: 2 2

i=n—1->Mn-1)..(n—1) = 1iteration

3a

for i in range(n):

for j in range (i+1l, n):

i=0->1..(n—1) = (n—1) iterations A m-1)+n-2)++2+1=
i=1-2..(n—1) = (n-2)iterations (n—1+1)+(n—2+2)+~--+(n—;+;)=
i=n—-1->Mm-1)..(n—1) = 1literation nEN + tf =

3a

for i in range(n):

for j in range (i+1l, n):

i=0-1..(n—1)=(n—1)iterations m-D+n-2)+--+2+1=
f=1—>2...(n—1)=(n—2)iterations . (n—1+1)+(n—2+2)+...+(n_g+g)=
;=n—1—’(n—1)---(n—1)=1iteration n+n+--+n=

) n*n—l

2

3a

n

—n

= %(n2 —n) = 0(n? —n) = 0(n?)

3b

The following made-up algorithm SLY has a runtime of ©(n?) , it includes the algorithm BENTLEY,
which has a runtime of ©(n?). Given this information, what can we say about the runtime of
MURRAY?

SLY (A):
n = len(A)
BENTLEY (n)
for i in range (mn):
MURRAY (A, i)

3b

The following made-up algorithm SLY has a runtime of ©(n?) , it includes the algorithm BENTLEY,
which has a runtime of ©(n?). Given this information, what can we say about the runtime of
MURRAY?

SLY (A) : ' Runs n*ntimes |
n = len(A)
BENTLEY (n) Runs n*ntimes |

MURRAY (A, i)

3b

The following made-up algorithm SLY has a runtime of ©(n?) , it includes the algorithm BENTLEY,
which has a runtime of ©(n?). Given this information, what can we say about the runtime of
MURRAY?

SLY (A): 'Runs n*ntimes |
n = len(A)

BENTLEY (n) 'Runsn*ntimes |

MURRAY (A, i)

Since the for-loop runs n times, MURRAY must
have a runtime of O(n)

43

Imagine that we want to modify the stable matching problem to allow same-sex marriages. Explain
how this changes the problem and provide a draft for an algorithm that solves it (the answer does
not have to be code, you can explain it with words, drawings, figures, etc.).

Solution:
Stable matching with same-sex marriage is commonly known as the stable roommates problem.

Here you were supposed to recognize that when there are no separate groups to match, and they
all have preferences within the same group, there isn’t always a stable matching. So the algorithm
first needs to check if a stable matching exists before finding said matching.

Simplify the following asymptotic expression, and explain your steps:

Simplify the following asymptotic expression, and explain your steps:

Solution:

Q(n*) O(n") O(n’)
03 Temd) T amd
Q(n?)+0(n*) + O(n?)

Assignment 2

Graph G = (V, E)
V = nodes

E = Edge - connects a pair of nodes

Undirected Directed

Node

Trees

An undirected graph is a tree if it is connected and does not contain a cycle

Rooted trees

Given a tree T, choose a root node r and orient each edge away from r

Models hierarchical structure

° o Q @ e 0 child of v

a tree the same tree, rooted at 1

Binary trees

Binary tree has a maximum of 2 child nodes from each node

Root

A4
/\A/\ e
/\/\ /\/\ "

Parent Node M /~/ F |« Siblings »v; Level 2

Child Node*(H) (). () Level 3
<& U9 -

Sub-tree Leaf Node

Graph traversal

BFS - Breadth First Search

e Implements a FIFO-list
o First-in-first-out
e Expands nodes with least debth first

Example

e \White nodes = undiscovered
e Gray nodes = discovered
e Black nodes = all neighboring nodes detected

r

$ t u
O=Q (>
4'4 D) 4%
Q =) 0 (=) Q==
v w X y

(d)

w

t

X

u

y

2 2 2

N | =

()

N =

W =

(1)

w

.‘7

(h)

w

u

Q

y

DFS - Depth-First Search

. Q.
Implements LIFO list e .
B C ® © (B) ©
o Last-in-First-out 5w @ % 5 @ % g ® & %
Expands a” nOdeS along one path, H (1) {J) K L) M N0 H (I J) KL M (N (00 H 1)J) K L M N ©O

before expanding any nodes on the
next path

Comparison

Breadth
First
Search

Topoligical sorting

Linear ordering of it's vertices, such that for every directed edge uv from vertex u
to vertex v, u comes before v in the ordering
The graph shown to the left has many valid topological sorts, including:

Oy O :
e5,7,3,11,8, 2,9, 10 (visual top-to-bottom, left-to-right)
©3,5,7,8,11, 2,9, 10 (smallest-numbered available vertex first)
¢5,7,3,8, 11,10, 9, 2 (fewest edges first)

¢7,5,11, 3,10, 8, 9, 2 (largest-numbered available vertex first)

e5,7,11, 2, 3, 8, 9, 10 (attempting top-to-bottom, left-to-right)

e @ e3,7,8,5,11, 10, 2, 9 (arbitrary)

Unsorted graph

Topologically
sorted graph

