Assignment Lecture

21. September 2022

Assignment 2 Solution

Assignment 3 Walkthrough

Assignment 2 Solution

Task 1 a)

Figure 1: Graph Romeo

Romeo:
BFS:
discovered=abdcehfgi, visited=abdcehfgi

DFS (stack):
discovered=abdehfigc, visited=adhfiegbc

DFS (recursive):
discovered=abcfidegh, visited=abcfidegh

Solution:
Note that there are two possible solutions for DF'S, one where a stack is used, and one where we
imagine a recursive method (which essentially will instantly expand the node as it is discovered).

Note also that since DFS discovers the nodes in alphabetical order, they will be added to the stack
in alphabethical order (and subsequently removed in the reverse order). This means that when
using the stack from a, b is discovered first, then d, but then d is the first to be removed from the
stack (and expanded /visited).

Figure 2: Graph Juliet

Juliet:
BFS:
discovered=aebcfgidh, visited=aebcfgidh

DFS (stack):
discovered=aebcfgihd, visited=aeihgdfch

DFS (recursive):
discovered=aebcfgdih, visited=aebcfgdih

-0 @0 &
oS OJOINOROSC
e‘go oo™ o

Figure 1: Graph Romeo Figure 2: Graph Juliet

Task 1 b)

Give a (single) topological ordering of the two graphs, or explain why that isn’t
possible.

Solution:

Romeo: (6 valid orderings)

adebcghfi

adebgchfi

adebghcfi

adegbchfi

adegbhcfi Juliet:

adeghbcfi Cannot create a topological ordering because the graph contains cycles. For instance: efe or aeba

Task 1 c)

Will BFS or DFS be more space efficient? Justify your answer and any
assumptions you make.

Usually

Solution/
DFS will‘be more space efficient.

In BFS nodes are added to a queue layer by layer, this means for instance in a binary tree (as an
example, same principle works in all graphs) with a height of 10, once the BF'S is going to start
expanding nodes on the 10th layer, it will have 1024 nodes in its queue (all nodes from layer 10).

In DFS nodes are added to a stack, in a binary tree of height 10, the stack will at most contain
10 nodes. (as the search passes down the tree it adds a maximum of 2 nodes to its stack for each
level, then removes one again to go the next layer down).

Ta S k 2 a) At all times, each device ¢ is within 200 meters of at least n/2 of the other devices. (You can
assume n is an even number.)

Does this property guarantee that the network will remain connected? Explain
your answer.

Solution:
Yes,

Lets say there are 10 phones, and my phone is one of them, the rule states that my phone must be
connected to 10/2 = 5 other devices at all times. This means that in my network there is at least
6 devices (5+my phone). That leaves only 4 devices "outside” of this network. In other words, for
the rule to apply to these phones as well, they all have to be connected to at least one phone from
"my” network, establishing a network between all the phones.

0
o

(1]
0 6
)

Task 3 a)

In any binary tree with a number of leaves (I), what can you say about the number
of nodes (N) that has two children? Explain your answer.

Solution:
The number of nodes with two children is exactly one less than the number of leaves. (N =1—1)

1 leaf = 0 nodes with 2 children 4 leaves = 3 nodes with 2 children

Task 3 b) i.

The height of a given binary tree is h.

What can you say about the total number of nodes n in the tree (min/max)?

Solution:

below are two examples of binary trees, both with a height of 2. The left tree has minimum number
of nodes, and right has maximum number of nodes. Note that the value in the nodes only show
how many nodes are in total after they are added level by level.

The simplest case will be where the tree is either completely left or right skewed (see left tree
above). This tree will contain h + 1 nodes.

In the other end we have the maximum number of nodes (see right tree above). Lets start with a
height of 0, this tree only contains the root (2° = 1 node). For each level we add below the root
(height increases by 1), the number of new nodes added are equal to 2" so for the first level 2! = 2
new nodes are added, and when increasing it to a height of 2 2° = 4 new nodes are added. In
general we get that the maximum number of nodes in a binary tree with height A is:

2k =2h+l -1

Fead
M-
o

We find that:

h+1<n<2h! 1

Task 3 b) ii.

You are now told that the number of leaves is [, what can you say about the number of nodes
n now?

Solution:
We have already established that if the tree has a height of k, the number of leaves it can have (as
maximum) is 2", the minimum number of leaves will always be 1 regardless of the height.

The minimum number of nodes will now be h + [.

We see that for the tree to have the maximum number of nodes, then number of leaves needs to
be 2". The maximum number of nodes will now be 2"+ — (2% +1 —)

Brlsn=s ! _ (@5 i -_0

Task 3 c)

The efficiency of a search through a binary tree is dependant upon the height of
the tree. The higher the tree is the more comparisons has to be done to reach

the furthest leaves. How should the root of a binary tree be selected to decrease
its height?

Solution:
The root should be selected such that the tree is as balanced as possible. For example, in a binary

tree containing numbers, we want the root to be the median of all the numbers, that way the
amount of numbers smaller than the root(and to the left in the tree), will be roughly equal to the
amount of numbers larger than the root (to the right in the tree).

Programming — Task 1
def BFS(graph: dict, start_node: str, end_node: str) -> list:
shortest_paths = |

start_node: [start_node],

nodes already checked
visited =
nodes "discovered" through the graph
queue = |start_node
while queue != []:
visit first node in queue
node = queue.pop(@)
visited.append(node)
get all edges from this node

edges = graph! node |

for edge in edges
if edge in visited or edge in queue:
already checked/discovered this node, skip to next edge
continue

when finding an edge to a node in BFS we know we have found the shortest path to that node
shortest_paths/edge|! = shortest_paths/node| + [edge

if edge == end_node:
found shortest path to end
return shortest_paths|edge

queue . append(edge)

return

Testing the function
shortest_path = BFS(graph, "a", "f")
print(shortest_path)

['a', 'b", 'c', "f']

Programming — Task 2
-ind all topological orderings
‘inding incoming edges

def find_incoming_edges(graph: dict) -> dict
incoming_edges =
for node in graph.keys
incoming_edges|/node| = 0

1terate over all edges 1n the graph and increase the counters
for edges in graph.values
for edge in edges
incoming_edges|/ edge| += 1
return incoming_edges

Testing the function
incoming_edges = find_incoming_edges(graph
print(incoming_edges

def find_all_topological_orders(
graph: dict,
incoming_edges: dict = incoming_edges,
visited: list = []

Programming — Task 2

topological _orders = | * °
topological orderings
for node in graph.keys():

We only want to check nodes that dont have uncoming edges,
and haven't already been visited
if incoming_edges node| != @ or node in visited:

continue

"remove" the edges coming from the visited node
and add the node to the path while setting it as visited
for edge in graph|node]:
incoming_edges edge| -= 1
path.append(node)
visited.append(node)

Recursively do this with the graph that now has the node "removed"
topological_orders . extend(

Found 13 topological orderings:

find_all_topological_orders(abcdfe
graph,
incoming_edges, abcfde
visited, abcfed
path,

abdcfe
acbdfe

backtrack: acbfde
We want to reset the changes we made so we can check other options acbfed
for edge in graph|/node :
incoming_edges|edge| += 1 acfbde
th. O
path .pop(acfbed

visited.remove(node)
bacdfe

If the path includes all nodes in the graph, we have a valid topological order
if len(path) == len(graph.keys()) bacfde

"nn

topological_orders.append("".join(path)) bacfed

return topological_orders badcfe

Questions?

For assignment 2 solution

Assignment 3 Walkthrough

Available now!

Deadline is 4. October (in 2 weeks)

Task 1 a)

Task 1 Divide and Conquer

a) Divide and Conquer is not only a widely used algorithm design paradigm, but
also a sociological and political strategy. Give a brief example how divide and
conquer has been used outside of the scope of algorithms.

Task 1 b)

b) Bank Security

Suppose you’re consulting for a bank that’s concerned about fraud detection, and they come to
you with the following problem.

They have a collection of n bank cards that they’ve confiscated, suspecting them of being used in
fraud. Each bank card is a small plastic object, containing a magnetic stripe with some encrypted
data, and it corresponds to a unique account in the bank. Each account can have many bank cards
corresponding to it, and we’ll say that two bank cards are equivalent if they correspond to the
same account.

It’s very difficult to read the account number off a bank card directly, but the bank has a high-
tech “equivalence tester” that takes two bank cards and, after performing some computations,
determines whether they are equivalent. Their question is the following:

among the collection of n cards, is there a set of more than n/2 of them that are all
equivalent to one another?

Assume that the only feasible operations you can do with the cards are to pick two of them and
plug them in to the equivalence tester. Show how to decide the answer to their question with only
O(nlogn) invocations of the equivalence tester. Provide pseudo code for your answer, and explain
how it achieves the goal of O(nlogn) uses of the equivalence tester. Note that running time of your
algorithm is irrelevant, its only the number of uses of the equivalence tester you need to consider.

Task 2

Task 2 Merge Sort

Given the following array:

a) Visualize how the array will be divided and then put back together during a
merge sort. Recursion should stop when there is only 1 element left in an array.

b) How many comparisons are done during this merge sort?

Task 3

See lecture for examples of how to solve these

Task 3 Recurrence Relations
a) Solve the following recurrences. Provide exact answers.

i. T(n)=T(n+1)-2" ; TA) =1
ii. T(n)=2-T(|n/2])+2forn>1 ; T(1)=0

Tip:
The floor operator |z| (or £loor(x)) strips all decimals.

For instance: |4.975| =4 and [10/3] = 3.

You also have the ceiling operator:

[4.975] = 5 and [10/3] =4

Task 4

Task 4 Local Minimum of a Grid Graph

Suppose that you are given an n x n grid graph G.

An n x n grid graph is just the adjacency graph of an n X n chessboard. To be completely
precise, it is a graph whose node set is the set of all ordered pairs of natural numbers (i, j),
where 1 < i <n and 1 < j < n; the nodes (i,5) and (k,l) are joined by an edge if and only if
t—k|+ |7 -1 =1.

Each node v is labeled by a real number z,; you may assume that all these labels are distinct. A
node v of G is a local minimum if the label z, is less than the label z,, for all nodes w that are
joined to v by an edge. The labeling is only specified in the following implicit way: for each node
v, you can determine the value z,, by probing the node v.

Show how to find a local minimum of G using only O(n) probes to the nodes of G. (Note that G
has n? total nodes.)

xwz

=
&

()

-/

N
J

Programming

* Implementing Merge Sort!
* Numbers and letters

Questions?

For assignment 3

