Kunnskap for en bedre verden

Assignment Lecture 05/10

Kunnskap for en bedre verden

Agenda

> Assignment 3 Solution
-> Assignment 4 Introduction
> Some Greedy Algorithms

O NINU

TDT4121 Introduction to Algorithms

Solution - Assignment 3
Divide and Conquer

Kunnskap for en bedre verden

BNTNU

Kunnskap for en bedre verden

Part 1 Theory

Task 1 Divide and Conquer

a) Divide and Conquer is not only a widely used algorithm design paradigm, but
also a sociological and political strategy. Give a brief example how divide and
conquer has been used outside of the scope of algorithms.

Solution:

This is an open task so no solution is given, but the answer should clearly state the main ideas of
the divide and conquer strategy.

BNTNU

Kunnskap for en bedre verden

b) Bank Security

among the collection of n cards, is there a set of more than n/2 of them that are all
equivalent to one another?

Solution:
Divide the set of cards into two equal piles of n/2 cards. The algorithm will be used recursively

on both piles. If the algorithm finds a majority equivalence class with more than half of a pile, a
card from that class will be returned.

Its worth noting that if there are more than n/2 cards that are equivalent in the whole set then
alteast one of the piles will have to have more than half of its cards from this equivalence class. For
the algorithm this means that if none of the two piles return a card, then there is no equivalence
class with more than n/2 cards. However it is not guaranteed that more than n/2 cards belong
to an equivalence class if a card is returned, we hence need to check the returned card against all

other cards.

W0 00 ~N O O & W N =

el e el
N OO D WN oo

algorithm takes a set of cards S
if |S| = 1 return the one card
if IS| = 2
if the two cards are equvalent
return either card
else
return nothing
let S1 be the first S/2 cards
let S2 be the set of the remaining cards
call algorithm recursively for S1
If a card is returned
test it against all other cards
If no card with majority equivalence is found
call algorithm recursively for S2
If a card is returned
test it against all other cards
Return card from majority equvalence class if one is found

BNTNU

Kunnskap for en bedre verden

Task 2 Merge Sort

a) Visualize how the array will be divided and then put back together during a
merge sort. Recursion should stop when there is only 1 element left in an array.

Solution:

One possible solution. When splitting the subarrays for the second time this solution split them

differently, thats simply for symmetrical reasons. The red arrows shows dividing, the green arrow
shows merging.

614|31512]1
&« —~
0143 21211
g ~Sh
6|4 \\\N i(/// 211
K N K i
6 4 3 3) 2
A K N K
416 z/// \\\\ 1|2
~ kK
3(4|6 1128
B il
1121341818

BNTNU

Kunnskap for en bedre verden

BNTNU

Kunnskap for en bedre verden

b) How many comparisons are done during this merge sort?

Solution:
When dividing the array no comparisons are done, we only need to look at the merging operations.

When merging two subarrays, we compare the "front” of each subarray, and insert the smallest
value. For instance when merging [4,6] and [3|, 4 and 3 are compared, and 3 is inserted. Since one
subarray is now empty, no more comparisons need to happen (4 and 6 are then inserted without
any new comparisons).

If we do this for all the merging operations we get:

6] + [4] = 1 comparison

4,6] + [3] = 1 comparison

2] + [1] = 1 comparison

5] + [1,2] = 2 comparison
3,4,6] + [1,2,5] = 5 comparison

= 10 comparions

Kunnskap for en bedre verden

Task 3 Recurrence Relations

a) Solve the following recurrences. Provide exact answers.

i. T(n)=TMn+1)-2" ; TA)=1

Solution:
T(n) =27]

BNTNU

Kunnskap for en bedre verden

Task 3 Recurrence Relations

ii. T(n)=2-T(|n/2])+2forn>1 ; T(1)=0

Tip:

The floor operator |z| (or floor(x)) strips all decimals.
For instance: |4.975| =4 and |10/3| = 3.

You also have the ceiling operator:

(4.975] = 5 and [10/3]| =4

Solution:
T(n)=2n-—2

loga n

T(n)=) 2

k=1
=2n — 2

Kunnskap for en bedre verden

Task 3 Recurrence Relations

iii. T(n)=T(n-1)+log(-"5)forn>1 ; T(1)=0

Solution:
T(n) = log (n)

Lets first simplify:

log(-) — log(n) — log(n — 1)

n—1

Using induction method:
T(n—1)=log(n—1):
T'(n) = log(n — 1) + log(n) — log(n — 1)
= log (n)

BNTNU

ap for en bedre verden

Task 3 Recurrence Relations

iii. T(n)=T(n-1)+log(-"5)forn>1 ; T(1)=0

Solution:
T'(n) = log(n)

Lets first simplify:

log (-) = log(n) — log(n — 1)

n-—1
Using iterative method:

T'(n) =log(n) —log(n—1)+T(n—1)
= log(n) — log(n — 1) + log(n — 1) — log(n — 2) + T'(n — 2)
= log(n) — log(n — 2) + T'(n — 2)
= log(n) — log(n — 2) + log(n — 2) — log(n — 3) + T'(n — 3)
= log(n) — log(n — 3) + T'(n — 3)

= log(n) — log(n — i) + T'(n — 1)

we let i =n — 1 and use that T'(n — n+ 1) = 0 to get:
T'(n) =log(n) —log(n —n+1)+T(n —n+1)
= log (n)

BNTNU

Task 4 Local Minimum of a Grid Graph

Suppose that you are given an n x n grid graph G.

An n X n grid graph is just the adjacency graph of an n X n chessboard. To be completely
precise, it is a graph whose node set is the set of all ordered pairs of natural numbers (i, j),
where 1 < i <nand 1 < j < n; the nodes (7,7) and (k,[) are joined by an edge if and only if
t—k|+ |7 =1 =1

Each node v is labeled by a real number z,; you may assume that all these labels are distinct. A
node v of G is a local minimum if the label z, is less than the label z,, for all nodes w that are
joined to v by an edge. The labeling is only specified in the following implicit way: for each node
v, you can determine the value z, by probing the node v.

Show how to find a local minimum of G using only O(n) probes to the nodes of G. (Note that G
has n? total nodes.)

Kunnskap for en bedre verden

BNTNU

unnskap for en bedre verden

Solution:

Let B denote the set of nodes on the border of the grid G - i.e. the outermost rows and columns.
Say that G has Property (*)if it contains a noce v ¢ B that is adjasent to a node in B and satisfies
v < B (<= preceeds). Note that in a grid G with Property (*), the global minimum does not
occur on the border B (since the global minimum is no larger than v, which is smaller than B) -
hence G has at least one local minimum that does not occur on the border. We call such a local
minimum an internal local minimum.

We now describe a recursive algorithm that takes a grid satisfying Property (*) and returns an
internal local minimum, using Q(n) probes. At the end, we will describe how this can be easily
converted into a solution for the overall problem.

thus let G satisfy Property (*), and let v ¢ B be adjacent to a node in B and smaller than all
nodes in B. Let C denote the union of the nodes in the middle row and middle column of G, not
counting the nodes on the border. Let .S = BUC'; deleting S from G divides G into four sub-grids.
Finally, let 7" be all nodes adjacent to S.

BNTNU

Kunnskap for en bedre verden

Using O(n) probes, we find the node u € S U T of minimum value. We know that u ¢ B, since
v € SUT and v < B. Thus, we have two cases. If u € C, then u is an internal local minimum,
since all of the neighbors of u are in SUT', and u is smaller than all of them. Otherwise, u € T'. Let
G’ be the sub-grid containing u, together with the portions of S that border it. Now, G’ satisfies
Property (*), since u is adjacent to the border of G’ and is smaller than all nodes on the border of
G’'. This, G’ has an internal local minimum, which is also an internal local minimin of G. We call
our algorithm recursively on G’ to find such an internal local minimum.

If T'(n) denotes the number of probes needed by the algorithm to find an internal local minimum
in a n X n grid, we have the recurrence T'(n) = O(n) + T'(n/2) which solves to T'(n) = O(n).

Finally, we convert this into an algorithm to find a local minimum (not necessarily internal) of a
grid G. Using O(n) probes, we find the node v on the border B of minimum value. If v is a corner
node, it is a local minimum and we are done. Otherwise, v has a unique neighbor u not on B.
If v < u, then v is a local minimum and again we are done. Otherwise, G satisfies Property (*)
(since u is smaller than every other node on B), and we can call the above algorithm (to find the
internal local minimum with O(n) probes).

BNTNU

Kunnskap for en bedre verden

times, is not the same as saying maximum n probes.
This is because, as we know, O(n) probes could actually
be 5n+10 probes (or any other linear function)

A key part of the solution is realising that probing O(n) .

BNTNU

Kunnskap for en bedre verden

times, is not the same as saying maximum n probes.
This is because, as we know, O(n) probes could actually
be 5n+10 probes (or any other linear function)

A key part of the solution is realising that probing O(n) .

The solution given here selects the Border as B

On B we find the node with the lowest value using
O(4n) => O(n) probes, we call this node v

If v is a corner node, we already know it is a local
minimum.

If not we have to check vs only neighbour that is not on
the border.

If not we have to check vs only neighbour that is not on
the border, and call this node u

If uis lager than v, then v is a local minimum

If uis smaller than v, we perform the algorithm
described in the solution, which finds an internal local
minimum with O(n) probes since we now know G
satisfies Property (*)

Kunnskap for en bedre verden

Part 2 Programming

BNTNU

Kunnskap for en bedre verden

s smaller()

def is_smaller(smaller: str, larger: str) -> bool:
"""Return True 1f 'smaller' 1s smallest, False otherwise

1f type(smaller) == type(larger):
Both are of the same type (number or letter) and can be compared directly
return smaller < larger

IRIR1

We want numbers to count as "smaller” than letters
We know now they are of different types, so that means if 'smaller' is a number

then 'larger' must be a letter and we return 'True'.
And 1t 'smaller' 1s not a number, then 'larger’' must be number. and we return 'False’

return type(smaller) == int

BNTNU

Kunnskap for en bedre verden

merge()

def merge(L: list, R: list, array: list):
L=0 # L index
r=0 #R i1ndex

for 1 in range(len(array)):

R_is_empty = r == len(R)
L_1s_not_empty = 1 < len(L)

1f R_1s_empty or (L_is_not_empty and 1s_smaller(L/1l], Rir])):
Insert Element from L
array[i] = L[1]

l +=1

else:
Insert Element from R
array[i1] = R[r]

r+=1

BNTNU

Kunnskap for en bedre verden

merge sort()

def merge_sort(array: list):

1f len(array) <= 1:
array of @ or 1 elements 1s already sorted, nothing to be done
return

Finding the mid of the array

middle_index = lenCarray) // 2

Dividing the array elements i1nto 2 halves

L = array| :middle_index|

R = array/ middle_index: |

Sort each half

merge_sort(L)

merge_sort(R)

Merge the halves

merge(L., R, array)

BNTNU

Kunnskap for en bedre verden

def test_sorting(array: list
print(f"Original Array ({len(array)} elements): \n{array}"
merge_sort(array
print(f"Sorted Array: \n{array}"

e T 1y gl L SRR OO L R o L P |
———e—~—m—m—na—a—a“™“—_l

Original Array (9 elements

e RN BT, TR RS B A i B
Sorted Array

WM A [DAY LA LR (L R L S

tast sortanate . - hY. 9. 48 i vt L BB B8 . st Tt L R 2R Bl RS B3 o tpt. CRNL 2. R gt PR Bd Y
L ___|

Original Array (120 elements

02 Me 9. BN W A Wy NG R R W R B S S TRt R Tl P 0d TR S
Sorted Array

o Fy 8 9,9, 1k, A2, K&, 23, :AN, 1B, £, €3y N, DN, 48, B9 0%, W, I, ., b, 3F: I3, I3 W, 0,00, 98, I3, B3,)

Kunnskap for en bedre verden

Assignment 4 Introduction

Chapter S: Greedy Algorithms

BNTNU

ap for en bedre verden

Chapter 5 - Greedy Algorithms

An algorithm (s greedy (f it builds up a solution in small steps, choosing a decision at each step
myopically to optimize some underlying criterion. One can often design many different greedy
algorithms for the same problem, each one locally, incrementally optimizing some different
measure on (ts way to a solution

Goals [=

The student should be able to:; 1.9

¢ Understand the different Interval Scheduling problems 1.3
Understand the Optimal Caching Problem ¢
Understand the Shortest Path Problem and how Dikstra’s algorithm solves it

Know what a Minimum Spanning Tree is and understand the Minimum Spanning Tree Problem
Understand Prim’s and Kruskal's algorithm N .4

e Understand Huffman and Huffman Codes & 1.9, 1.6, A

e

How much do you know about

Interval Scheduling Problem(s)

(Minimum) Spanning Trees

Prim and Kruskal algorithms
1

‘Shortest Path(s) in a Graph

Nothing

ﬂbijkstrds algoritm

Huffman Coding

A lot

Kunnskap for en bedre verden

Kunnskap for en bedre verden

Contents

Part 1 Theory
Task 1 The interval scheduling problem
Task 2 Minimum spanning trees L e e e e e e e
1SS Dl Bal DLEIERRE : & & 55 = 6 4 8 50 A R LE 5 o d B @ U S o6& 6 ow ds
Tankcd Voo Eaine QPEIRIE . & 5 5 5 ik o B e RS R R R N s

1k S Huluah GOBIIE « o v wob an w @b w b6 % 0 56 s & Sl G00s Bl 8 08 5 we w @
AnEES W hplmal . b 2 Fhk g bl e e B o R e R e b e e e B

B DY = = = e e

AW

Part 2 Programming
Task 1 Implementing the Huffman Algorithm

DO

e

= W N =

on

N

Task 1 The interval scheduling problem

The following task will be based on the interval scheduling problem as explained in the book:

Initially let R be the set of all requests, and let A be empty
While R is not yet empty
Choose a request i1 from R that has the smallest finishing time

Add request i to A
Delete all requests from R that are not compatible with request

3
EndWhile

Return the set A as the set of accepted requests

a) Explain in your own words how the algorithm described above returns an optimal
set

b) Given the following table of activities:

Activity U VvV W X Y Z

Start time 2.4 8 & 18 .1
Finishingtime 6 4 8 9 12 5

After running the interval scheduling algorithm described above, which of the intervals will be
number two in the return set A?

And what will the size of A be?

BNTNU

Kunnskap for en bedre verden

Why is this a Greedy algorithm? SN

Because its greedy,
chooses optimal
solution at each step
and builds upon that

Initially let R be the set of all requests, and let A be empty
While K 1s not yet empty

Choose a request i€ R that has the smallest finishing time

Add request | to A

Delete all requests from K that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

Kunnskap for en bedre verden

Interval Scheduling in Python

e

What is the complexity of my implementation of the
Interval Scheduling algorithm?

Kunnskap for en bedre verden

1

What is the theoretical complexity of the Interval @XNU.
Scheduling algorithm?

2

nlogn

BNTNU

Kunnskap for en bedre verden

Task 2 Minimum spanning trees

a) We have an edge (u,v) that has a strictly lower weight than all the other edges
in a connected graph. Will this edge be included in the minimum spanning tree?

Explain why or why not.
b) Consider the following statement about Minimum Spanning Trees

We have a weighted undirected graph G = (V, E') where all of the edges are weighted differently:

If the nodes V' can be divided into two disjoint sets X and Y , then the minimum spanning tree
will include the edge between X and Y with the lowest weight.

Is this correct?” Explain why or why not.

Minimum Spanning Tree

> A tree is an acyclic undirected graph

> Consider a connected undirected graph &
> A spanning tree 7' C (is a tree which includes all nodes of &G
> A minimum spanning tree is a spanning tree with the minimum possible total edge weight

Kunnskap for en bedre verden

Minimum Spanning Tree (black) of a graph G (gray)

How many edges ' inaspanningtree 7’ C G, ®¥U
where G has NV nodes?

What algorithms are used to find minimum

spanning trees?

Intervall scheduling?

prims and kruskal

Kunnskap for en bedre verden

Kunnskap for en bedre verden

Task 3 Shortest path in a graph

a) Can we use Dijkstra’s algorithm to solve the shortest path problem on an
undirected graph? Explain why or why not.

b) Explain, in your own words, why Dijsktra’s algorithm works

BNTNU

Kunnskap for en bedre verden

P Dijkstra's Algorithm Code Visualization (with Priority Queue)

Dijkstra’s Algo
priority queue

UnReachSet G.V h
vertices v.key oo
vertices v.previous 2

S.key

while UnReachSet 2 @

v EXTRACT-MIN(UnReachSet)
for each neighbor u of v
Relax edge (v, u)
if u.key v.key weight(u, v)
u.key v.key weight(u, v)

p
3
4
5
6
B
8
9

b
N e ©

u.previous V

Watch on £ Youlube

Dijkstra finds the shortest path from PN

a single source to all other nodes

The complexity of Dijkstra depends on the data ®NTNU
structure of the internal priority queue. Sort by
complexity from low (1) to high (3)

Ist Fibonacci heap

BNTNU

Kunnskap for en bedre verden

Task 4 Video game design

A video game developer has approached yvou since they heard rumors that you are taking the course
TDT4121, and you know a thing or two about algorithms. They are making a side-scrolling video

Page 1 of 2

TDT4121 Assignment 4
Introduction to Algorithms Greedy Algorithms

game where the main character moves from left to right, and he wants to add checkpoints to the
game using an algorithm.

You can imagine the game as a flat straight line going from left to right, with obstacles placed
along the way with varying distances between them. You want to add checkpoints so that each
obstacle is within 400 pixels of a checkpoint, and you also want to add as few checkpoints as
possible. Construct an efficient algorithm that places as few checkpoints as possible. Prove the
correctness of your algorithm.

®NTNU
Task 5 Huffman coding

a) You are given a text file with the following frequencies:

Letter W X Y 4

Frequency 10 4 2 5

What will the Huffman code for Y be in this example? Show your steps

b) Provide a Huffman encoding for the phrase: “SHE SELLS SEASHELLS SHE SEES
SEASHELLS THE SHELLS SHE SELLS ARE SEASHELLS SHE SEES THEM”. Explain your
answer by making a frequency table and drawing a Huffman tree, and then
creating the codes based on the tree. You can ignore spaces.

BNTNU

Kunnskap for en bedre verden

E How Computers Compress Texi: Huffman Coding and Huffman Trees

IHE BASICS™

| —

5 4

Watch on B Youlube

e

What makes Huffman Coding efficient? °*™.

Saving space use less bits to store frequent
characters

[1]

1 - Data structures set up

We want to sort our characters using a binary heap. You can implement a binary heap in Python using

the heapq library. We want to create a HeapNode class that will work as the basis for storing our

Huffman tree. To use our HeapNode class with the heapq library, we need to modify some of its built-in
arithmetic operations. We want to change the < and = operations to compare the values of the nodes.

class HeapNode:

def

def

def

def

def

__1nit__ (self, character, value):

TODO: Initialize the HeapNode with a character and value
We also want to keep track of left child and right child,
so these should be initialized as None

print("Example code")

-1t {self, other):

TODO: check if other is a HeapNode object (return false if it isn't)
and return a lesser than (<) comparision between the two objects
values

print("Example code")

__eq__(self, other):

TODO: check if other is a HeapNode object (return false if it isn't)
and return an equals (==) comparision between the two objects values
print("Example code")

__str__(self):

TODO Add a fitting _ str__ for printing the Node, could be usefull
for testing along the way

return "example code”

__repr_ (self) -»> str:
return self. str ()

Python

BNTNU

Kunnskap for en bedre verden

[2]

2 - Making the frequency heap

Let's start by constructing our frequency heap, we want to take a string as input and count the
characters using a dictionary, we then want to input the characters into our heap using the heapq
library.

def make_ frequency heap(string: str) -> list:
Initialize freq dictionary and heap array
freq = {}
heap = []
TODO loop through the characters in the string and
insert them into the freq dictionary,
with the character being they key and the value being the frequency

TODO insert the values from the freq dictionary into the heap
using the HeapNode object and the heapq library

return heap

teststring = "ABBCCCDDDD"
heap = make frequency heap(teststring)
for node in heap:

print(node)

Python

BNTNU

Kunnskap for en bedre verden

BNTNU

Kunnskap for en bedre verden

3 - Merging the codes

Next, we want to merge the characters with their frequencies together. Follow the instructions in the
pseudocode bellow to merge the heap into a single Huffman tree

def merge code(heap: list) -> HeapNode:
TODO
While there is more than one node in the heap
Extract the two nodes with the lowest frequency letters from the heap
(remember that the letter with the lowest frequency will always be at the

top of the heap)
Create a new node that has the sum of the values of the two nodes as its
value, and the two nodes as left and right child respectively

Push this new node into the heap

Return the root of the tree
return heap[0]

Python

[4]

4 - Traversing the tree

We've now made a program that can construct a Huffman tree using Huffman's algorithm. Now we want
to traverse said tree and find out what the Huffman encoding is for each letter. We will do this
recursively. We have created the main function traverse_huffman() to set up the variables for you.
Your job is to finish the implementation of traverse huffman_recursive().

def traverse_huffman(root: HeapNode) -> dict:
Stores the codes for each letter
codes = {}
Keeps track of the current code
current_code =
traverse recursively
traverse huffman_recursive(root, current_code, codes)
return finished encoding
return codes

def traverse_huffman_recursive(node: HeapNode, current_code: str, codes: dict)
-> None:

TODO if there exists a character in the node,

append current_code as the value and the character

as the key in codes and return

TODO make the recursive calls, there should be two,

one for the left side of the tree and one for the right

When you traverse to the left, append @ to the current code,
and 1 if you traverse to the right

return

Python

BNTNU

Kunnskap for en bedre verden

BNTNU

Kunnskap for en bedre verden

Running the program

Here we have a main function to run the whole program, use it to test if you get the correct output:

def main():
text = "ABBBBCCCDDEEEEAAAEEBBBCC"

heap = make frequency heap(text)
root = merge code(heap)

encoding = traverse_ huffman(root)
print(encoding)

main()

1] v/ 04s Python

Expected output: {'C': 'e@0', 'E': '@1', 'D': '100', 'A': '101', 'B': '11'}

Ask me anything BNTNU .

O questions
O upvotes

