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Interval scheduling.
- Job j starts at s; and finishes at f;. B, E,H
. Two jobs compatible if they don't overlap.
. Goal: find maximum subset of mutually compatible jobs.
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Huffman coding

B islalminiaieleialeialciale

* Huffman Coding is a technique of compressing
data to reduce its size without losing any of the
details. It was first developed by David Huffman.

* Huffman Coding is generally useful to compress
the data in which there are frequently occurring

characters.



1

Calculate the frequency of each character in the string

B C A D



2

Sort after frequency

B D A C




Create a node with the value of the sum of the two
minimum frequencies. The left child is the least

frequency and the right is the second minimum
frequency. Here node Band D

Remove these two minimum frequencies
from Q and add the sum into the list of frequencies

(* denote the internal nodes in the figure)




A

Insert new node and repeat step 1-3




A

Insert new node and repeat step 1-3




For each non-leaf node, assign 0 to the left
edge and 1 to the right edge




Exercise 5

Dynamic Programming



Task 1

Your friend Jesse has made the following code for calculating the n*”® Fibonacci number:

def fib(n: int) -> int:
if n <= 1:
return n
return fib(n - 2) + fib(n - 1)

He asks you for help optimizing it, and you decide to analyze the code by drawing up a tree of the
recursive calls when you call £ib(5)

a) Draw the tree and use it to analyze the runtime of the recursion, do you notice
a pattern in the tree?

b) You decide to help Jesse. Based on your observations from task a), describe an
algorithm that solves the same problem in linear time

c) What properties must a problem have for it to be able to be solved with dynamic
programming?



What happens when you call fib(5)?

def fib(n: int) -> int:
if n <= 1:
return n
return fib(n - 2) + fib(n - 1)

a) Draw the tree and use it to analyze the runtime of the recursion, do you notice
a pattern in the tree?

If 5<=1:
return 5
Return fib(5 — 2 = 3) + fib(5-1 = 4)
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What happens when you call fib(5)?

def fib(n: int) -> int:
if n <= 1:
return n
return fib(n - 2) + fib(n - 1)

a) Draw the tree and use it to analyze the runtime of the recursion, do you notice
a pattern in the tree?

If 5<=1:
return 5
Return fib(5 — 2 = 3) + fib(5-1 = 4)

How does the tree grow as n
grows?




Task 1b

def fib(n: int) -> int:
if n <= 1:
return n
return fib(n - 2) + fib(n - 1)

b) You decide to help Jesse. Based on your observations from task a), describe an
algorithm that solves the same problem in linear time

Will there be repeated calls in the case

of fib(5)? Is there a way to save and
reuse results?



Task 1c

def fib(n: int) -> int:
if n <= 1:
return n
return fib(n - 2) + fib(n - 1)

c) What properties must a problem have for it to be able to be solved with dynamic
programming?

What makes dynamic programming
work? For what problems will it not
work?



Task 2

Task 2 Smoothie algorithm

Your friend Walter has made an algorithm based on dynamic programming. The algorithm makes
the best-tasting smoothie based on the fruit and vegetables in Walter’s pantry. You look at the
algorithm and observe that it only calculates and returns the taste levels of the optimal smoothie.

But it does not give the actual ingredients. Walter argues it’s a trivial difference, and adding said
functionality would be easy. What do you think?

How does dynamic programming build
solutions? Can we easily modify the
technique so that the decisions made
are returned as well?



Task 3

Task 3 Shortest-path

Bellman-Ford and Dijkstra’s algorithms are both algorithms for finding the shortest path in a
graph. Explain their differences, in both the problem they solve and how they solve it.

When does Dijkstra’s not work? When
does Bellman-Ford not work?



Task 4a

Task 4 Grid traveling

a) Given a nxm grid where you are only allowed to move to the right or downwards
from one cell to another. In how many ways can you travel from the top left
corner (S) to the bottom right corner(F) when the grid has the following sizes:

i. 3 x3 Grid




Task 4a

Task 4 Grid traveling

a) Given a nxm grid where you are only allowed to move to the right or downwards
from one cell to another. In how many ways can you travel from the top left
corner (S) to the bottom right corner(F) when the grid has the following sizes:

i. 3 x3 Grid

T
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Two possible paths




Task 4b

gridTravel (n,m):
Array A[O...m, O...n]
Af1,1] = 1

£ o S =l DN e
TOFE =0 10D e m
current = A[i,j]
A[i+1][j] += current
A[i]l[j+1] += current
Endfor
Endfor
return A[m, n]

Does Saul’s pseudocode work? Explain why or why not.



Task 4b

gridTravel (n,m):
Array A[O...m, O...n]

A[1,1] = 1
£ o S =l DN e
TOFE =0 10D e m
current = A[i,j]

A[i+1][j] += current
A[i]J[j+1] += current
Endfor
Endfor
return A[m, n]

Does Saul’s pseudocode work? Explain why or why not.

Why do we set A[1,1] =17



How many paths are there from (1,1) to (2, 1)?



Only 1 path, so we set A[1,2] = 1



How many from (1, 1) to (2,2)?



1 2 3

1

o
S

We can enter (2,2) either from (2,1) or
from (1,2)



So the number of paths to (2, 2) equals:

The number of paths to (2, 1)
+

The number of paths to (1,2)



O W 00 N O O b W N =

Task 5b - Sequence alignment

b) Which of the following alignments of PALETTE and PALATE, has the lowest
cost? Explain your answer.

Assume that § = 2 and ;¢ =1 if p is not equal to ¢, and o,y = 0 if p is equal to g.

# Allignment 1
PALETTE
PALATE -

# Allignment 2
PALETTE
PALAT-E
# Allignment 3

P-ALETTE
=PALAT —F

How many gaps are there? How many
misalignments? What is the cost of each?



