Assignment 4

Solution

W N -

~N ®

Task 1 The interval scheduling problem

The following task will be based on the interval scheduling problem as explained in the book:

Initially let R be the set of all requests, and let A be empty
While R is not yet empty
Choose a request i from R that has the smallest finishing time
Add request i to A
Delete all requests from R that are not compatible with request
i
EndWhile
Return the set A as the set of accepted requests

a) Explain in your own words how the algorithm described above returns an optimal
set

Solution:
Some version of the proof 4.3 in Algorithm Design is accepted here, as long as it isn’t just directly
copied.

It’s not obvious that this algorithm produces the optimal solution. It does, though. How do we

prove this? By contradiction.

» Let i, i,, ... i denote a set of jobs selected by greedy.
* Let j,, jo, - j, denote a set of jobs in an optimal solution with
iy = 1. 1= Jp, - ip = j,. for the largest possible value of r.

job i, finishes before j.,,
Greedy: iy L i b

OPT: b I I I BN
l

why not replace job .,

b) Given the following table of activities:

Activity U VvV W X Y Z

Start time 3 2 &5 § 10 1
Finishing time 6 4 8 9 12 5

After running the interval scheduling algorithm described above, which of the intervals will be
number two in the return set A?

Solution:

If we go through the steps of the algorithm we need to select the request with the smallest finish
time, which is V. Then we select the next set, which is W, then we select Y.

Meaning the interval W will be number two in the return set A

12

1

10

5> 32 X >N
|) | [N) N e |

S L W— At — y— -t
N<Xs<cC

Earliest finish: V
{V}

10

1

12

.N.-<.><-§<<<C. .

Incompatible with Z and U
Earliest finish: W
{V, W}

10

1

12

YN.<.><.EY<,:. .

Incompatible with X
Earliest finish: Y
{V, W, Y}

10

1

12

YN.<.><.EY<,:.

Incompatible with X
Earliest finish: Y
{V, W, Y}

And what will the size of A be?

Solution:
As we saw from above the size of A will be 3

Task 2 Minimum spanning trees

a) We have an edge (u,v) that has a strictly lower weight than all the other edges
in a connected graph. Will this edge be included in the minimum spanning tree?
Explain why or why not.

Solution:

If we have a minimum spanning tree T' where (u,v) is not included, inserting (u,v) will make
a cycle. Then we can remove another edge from the cycle, which we know has a higher value
than (u,v). Doing this leads to a spanning tree with lower weight. Meaning that (u,v) has to be
included in the spanning tree.

Task 2 Minimum spanning trees

a) We have an edge (u,v) that has a strictly lower weight than all the other edges
in a connected graph. Will this edge be included in the minimum spanning tree?
Explain why or why not.

Solution:

If we have a minimum spanning tree T' where (u,v) is not included, inserting (u,v) will make
a cycle. Then we can remove another edge from the cycle, which we know has a higher value
than (u,v). Doing this leads to a spanning tree with lower weight. Meaning that (u,v) has to be
included in the spanning tree.

crossing edges separating
gray from white vertices
are drawn i red

|
minimum-weight crossing edge
must be i the MST

b) Consider the following statement about Minimum Spanning Trees

We have a weighted undirected graph G = (V, E) where all of the edges are weighted differently:

If the nodes V' can be divided into two disjoint sets X and Y , then the minimum spanning tree
will include the edge between X and Y with the lowest weight.

Is this correct? Explain why or why not.

Solution:

Yes, let’s say we make a spanning tree without including the lightest edge between X and Y, then
we could replace this edge with the lightest edge. Meaning a minimum spanning tree without the
lightest edge between X and Y does not exist.

This problem is very similar to the one above, both test if the student understands the cut property.

b) Consider the following statement about Minimum Spanning Trees

We have a weighted undirected graph G = (V, E) where all of the edges are weighted differently:

If the nodes V' can be divided into two disjoint sets X and Y , then the minimum spanning tree
will include the edge between X and Y with the lowest weight.

Is this correct? Explain why or why not.

Solution:

Yes, let’s say we make a spanning tree without including the lightest edge between X and Y, then
we could replace this edge with the lightest edge. Meaning a minimum spanning tree without the
lightest edge between X and Y does not exist.

This problem is very similar to the one above, both test if the student understands the cut property.

crossing edges separating
gray from white vertices
are drawn m red

minimum-weight crossing edge
must be in the MST

Task 3 Shortest path in a graph

a) Can we use Dijkstra’s algorithm to solve the shortest path problem on an
undirected graph? Explain why or why not.

Solution:

Yes, although Dijkstra’s algorithm is meant to be used on a directed graph, we can simply make
an undirected graph directed by adding edges in each direction between every node that has an
edge.

Task 3 Shortest path in a graph

a) Can we use Dijkstra’s algorithm to solve the shortest path problem on an
undirected graph? Explain why or why not.

Solution:
Yes, although Dijkstra’s algorithm is meant to be used on a directed graph, we can simply make
an undirected graph directed by adding edges in each direction between every node that has an

edge.

An undirected graph is basically the same as a directed graph with bidirectional connections (= two connections in
opposite directions) between the connected nodes.

So you don't really have to do anything to make it work for an undirected graph. You only need to know all of the
nodes that can be reached from every given node through e.g. an adjacency list.

b) Explain, in your own words, why Dijsktra’s algorithm works

Solution:
Some version of the proof 4.14 in Algorithm Design is accepted here, as long as it isn’t just directly
copied.

Task 4 Video game design

A video game developer has approached you since they heard rumors that you are taking the course
TDT4121, and you know a thing or two about algorithms. They are making a side-scrolling video
game where the main character moves from left to right, and he wants to add checkpoints to the
game using an algorithm.

You can imagine the game as a flat straight line going from left to right, with obstacles placed
along the way with varying distances between them. You want to add checkpoints so that each
obstacle is within 400 pixels of a checkpoint, and you also want to add as few checkpoints as
possible. Construct an efficient algorithm that places as few checkpoints as possible. Prove the
correctness of your algorithm.

Solution:

We can (rather surprisingly) solve this with a greedy algorithm. If o is the left-most obstacle, we
can place a checkpoint 400 pixels to the right of said obstacle. Now we remove all obstacles that
are within the range of the checkpoint and repeat.

Let’s think of the optimal solution to this problem. We know that from our solution we cover every
obstacle possible within the range of the checkpoint since we move from the left. We can prove
that this and the optimal set have the same size since the optimal set has to be at most as far
to the right as our solution. Moving more to the right would not include the first obstacle. Let’s
say that the optimal solution is more to the left than our solution, this would not be optimal if
there is some obstacle that is in range in our solution, but out of range if you move the checkpoint.
Meaning that the optimal solution IS our solution.

Task 5 Huffman coding

a) You are given a text file with the following frequencies:

Letter W X Y Z

Frequency 10 4 2 5

What will the Huffman code for Y be in this example? Show your steps

Removing two minimum elements from the priority queue. Rl onss TR TP

SIOI0IO ONO
= (=

Removing two minimum elements from the priority queue.

Reinserting the new root node In the priority queue.

® Q6 5

Reinserting the new root node In the priority queue.

Removing two minimum elements from the priority queue.

Solution:
We start by drawing a Huffman-tree based on the frequency table:

A2
ol
@ 0 1
o)

We can then traverse down the tree where we find that the code for Y is ‘110°

Solution:
We start by drawing a Huffman-tree based on the frequency table:

We can then traverse down the tree where we find that the code for Y is ‘110°

b) Provide a Huffman encoding for the phrase: “SHE SELLS SEASHELLS SHE SEES
SEASHELLS THE SHELLS SHE SELLS ARE SEASHELLS SHE SEES THEM”. Explain your
answer by making a frequency table and drawing a Huffman tree, and then
creating the codes based on the tree. You can ignore spaces.

Solution:
Let’s start by creating a frequency table:

Letter S H E A T M R L

Frequency 23 10 29 4 2 1 1 12

Now let’s draw the Huffman tree for this frequency table. Keep in mind that the Huffman algorithm
is non-deterministic, so your solution could differ from this as this sequence of numbers will lead
to some equal values, so nodes could differ from being on the left or right side of its parent.

» graph to create our Huffman codes:

Letter S H E A i M R

L

Code 11 011 10 0100 01010 010110 0101111

00

Task 6 * Optional

a) In a Huffman-code for an alphabet with n > 1 symbols, what is the largest length
a codeword for a symbol can have? Provide proof of your statement.

Solution:
Answering n — 1 is not sufficient, as this is not true for n = 1, a more detailed explanation is
required to get credit

Since the Huffman codes are stored in a binary tree and the letter with the lowest frequency is
stored at the bottom, then the largest lenght of a symbol will be n — 1 and the shortest length
would be , this however does not hold true if there are n = 1 symbols. Then the longest length
would be 1.

Part 2. Programming

class HeapNode:

def

def

def

def

def

__init__(self, character, value):

self.character = character
self.value = value
self.left_child = None
self.right_child = None

__1t__(self, other):

if not isinstance(other, HeapNode):
return False
return self.value < other.value

__eq__(self, other):

if not isinstance(other, HeapNode):
return False
return self.value == other.value

_str__(self) => str:

string = f"Character: '{self.character}' "
string += f"Value: '{self.value}' "

string += f"Left child: '{self.left_child}' "
string += f"Right child: '{self.right_child}' "
return string

__repr__(self) => str:

return self.__str_ ()

2 - Making the frequency heap

import heapq

def make_frequency_heap(string: str) -> list:
Initialize freq dictionary and heap array
freq = {}
heap = []
loop through the characters in the string
for character in string:
if character not in freq:
insert them into the freq dictionary,
with the character being they key and the value being the frequency
freqlcharacter] = 1
else:
increase the frequency
freqlcharacter] += 1

for character in freq:
insert the values from the freq dictionary into the heap
node = HeapNode(character, freqlcharacter])
heapq.heappush(heap, node)

return heap

teststring = "ABBCCCDDDD"
heap = make_frequency_heap(teststring)
for node in heap:

print(node)

3 - Merging the codes

def merge_code(heap: list) -> HeapNode:

While there is more than one node in the heap

while len(heap) > 1:
Extract the two nodes with the lowest frequency letters from the heap
(remember that the letter with the lowest frequency will always be at the top of the heap)
nodel = heapq.heappop(heap)
node2 = heapq.heappop(heap)
Create a new node that has the sum of the values of the two nodes as its value,
and the two nodes as left and right child respectively
newnode = HeapNode(None, nodel.value + node2.value)
newnode.left_child = nodel
newnode.right_child = node2
Push this new node into the heap
heapq.heappush(heap, newnode)

Return the root of the tree

return heap[0]

4 - Traversing the tree

def traverse_huffman(rootnode: HeapNode) -> dict:
Store the codes for each letter
codes = {}
Keeps track of the current code
current_code = ""
traverse recursively
traverse_huffman_recursive(rootnode, current_code, codes)
return finished encoding
return codes

def traverse_huffman_recursive(node: HeapNode, current_code: str, codes: dict) -> None:
if there exists a character in the node,
if node.character != None:
append current_code as the value and the character
codes [node.character] = current_code
as the key in codes and return
return

Left side of the tree, append @ to the current node
traverse_huffman_recursive(node. left_child, current_code + "0", codes)
Right side of the tree, append 1 to the current node
traverse_huffman_recursive(node.right_child, current_code + "1", codes)

Running the program

Here we have a main function to run the whole program, use it to test if you get the correct output:

def main():
text = "ABBBBCCCDDEEEEAAAEEBBBCC"
heap = make_frequency_heap(text)
rootnode = merge_code(heap)
encoding = traverse_huffman(rootnode)
print(encoding)

main()

{'C': 'eo', 'E': '0O1', 'D': 'l1l00', 'A': 'l01', 'B': '11'}

Dynamic Programming

Main idea: reuse solutions to overlapping subproblems

e Some problems have overlapping subproblems. Instead of solving the the
subproblem again and again, can we store the solution after the first time we
solve it and retrieve it every time we encounter the same problem again?

When can we use dynamic programming?

1. Optimal substructure: the optimal solution to the main problem builds on the
optimal solutions of its subproblems
2. Overlapping subproblems: subproblems occur more than once

Example: finding the shortest path

Want to go from 1to 4

Can we decompose this into a subproblem?

Shortest path from 1 -> 2 and from 2 -> 4

Combining these gives us the shortest path from 1 -> 4

Example: finding the longest path

Want to go from 1to 4

Can the longest path be decomposed into subproblems?

We try the same decomposition: 1->2 and 2->4

Does not work! We already went through 4
(2 0’6
O OO0

i«

Shortest path has optimal
substructure, longest path does not

Example: LCS

Longest Common Subsequence

What is the longest common substring of two strings?

ST BV EREN EY
v AR

1. Create a table x™y

w O >» O >
o

Fill the values using these rules:

1. If the letter on the current row
and current column is the
same, fill the current cell with
the value of the diagonal
element + 1

2. Else: take the maximum
value from the previous
column/row

w O >» O P

Fill the values using these rules:

1. If the letter on the current row
and current column is the
same, fill the current cell with
the value of the diagonal
element + 1

2. Else: take the maximum
value from the previous
column/row

3. Repeat steps 1 and 2 until
the whole table is filled

w O >» O >

b

o — S —

O —

B —

B o —

— N

-

N—N—N

The value in the very last cell is the length of the LCS

w O >» 0O >
o
s
.
i
N

How do we find the actual sequence (not just the length)?

w O >» 0O >
o
s
.
i
N

Save the arrows and backtrack

w O >» O »

o —

(oY

Remove all but diagonal arrows

This leaves us with CA, which is
the LCS

w O >» 6 »

=

s —

How does this translate to code?

1. Let XandY be two given strings
2. Initialize a table LCS of size X.length * Y.length

Fill the first row and column with Os

1. Let XandY be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with Os

Starting at (1, 1), go through every cell

Let X and Y be two given strings
Initialize a table LCS of size X.length * Y.length
Fill the first row and column with Os
For every character X[i] in X[1:]:
For every character Y[j] in Y[1:]:

A\

wm O >» 0O >

Check if the characters match

A\

Let X and Y be two given strings
Initialize a table LCS of size X.length * Y.length
Fill the first row and column with Os
For every character X[i] in X[1:]:
For every character Y[j] in Y[1:]:
If X[i] = Y[j]:
LCSIi, j] = LCSJ[i-1, j-1] + 1

0

0

No match

Let X and Y be two given strings
Initialize a table LCS of size X.length * Y.length
Fill the first row and column with Os
For every character X][i] in X[1:]:
character Y[j] in Y[1:]:

A\

Else: LCSJi, j] = max(LCSJi-1, j], LCS]i, j-1])
Point an arrow to max(LCSJi-1, j], LCS]i, j-1])

Max of (0, 0)is O

Let X and Y be two given strings
Initialize a table LCS of size X.length * Y.length
Fill the first row and column with Os
For every character X][i] in X[1:]:
For every character Y[j] in Y[1:]:
If X[i] = Y[j]:
LCS]i, j] = LCSJ[i-1, j-1] + 1
Point an arrow from LCS]i, j] to LCSJi-1, j-1]
Else: LCS]i, j] = max(LCSJ[i-1, j], LCSIi, j-1])
Point an arrow to max(LCSJi-1, j], LCS]i, j-1])

A\

- [

o W

What is the runtime complexity of this algorithm??

1. Let XandY be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with Os
4. For every character X]i] in X: # Loop runs X.length times
For every character Y[j] in Y: # Loop runs Y.length times
If X[i] = Y[j]: # This takes constant time

LCS]i, j] = LCSJ[i-1, j-1] + 1
Point an arrow from LCS]i, j] to LCSJi-1, j-1] Runtime is
Else: LCSJi, j] = max(LCSJi-1, j], LCS]i, j-1]) O(X.length*Y.length)
Point an arrow to max(LCSJi-1, j], LCS]i, j-1])

