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Earliest finish: V
{V}



Incompatible with Z and U
Earliest finish: W
{V, W}



Incompatible with X
Earliest finish: Y
{V, W, Y}



Incompatible with X
Earliest finish: Y
{V, W, Y}













An undirected graph is basically the same as a directed graph with bidirectional connections (= two connections in 
opposite directions) between the connected nodes.

So you don't really have to do anything to make it work for an undirected graph. You only need to know all of the 
nodes that can be reached from every given node through e.g. an adjacency list.

























Part 2: Programming













Dynamic Programming



Main idea: reuse solutions to overlapping subproblems

● Some problems have overlapping subproblems. Instead of solving the the 
subproblem again and again, can we store the solution after the first time we 
solve it and retrieve it every time we encounter the same problem again?



When can we use dynamic programming?

1. Optimal substructure: the optimal solution to the main problem builds on the 
optimal solutions of its subproblems

2. Overlapping subproblems: subproblems occur more than once



Example: finding the shortest path

1 2

3 4



Want to go from 1 to 4

1 2

3 4



Can we decompose this into a subproblem?

1 2

3 4



Shortest path from 1 -> 2 and from 2 -> 4

1 2

3 4

1 2

3 4



Combining these gives us the shortest path from 1 -> 4

1 2

3 4



Example: finding the longest path

1 2

3 4



Want to go from 1 to 4

1 2

3 4



Can the longest path be decomposed into subproblems?

1 2

3 4



We try the same decomposition: 1->2 and 2->4

1 2

3 4

1 2

3 4



Does not work! We already went through 4

1 2

3 4

1 2

3 4

1 2

3 4



Shortest path has optimal 
substructure, longest path does not



Example: LCS
Longest Common Subsequence



What is the longest common substring of two strings?



1. Create a table x*y



Fill the values using these rules:

1. If the letter on the current row 
and current column is the 
same, fill the current cell with 
the value of the diagonal 
element + 1

2. Else: take the maximum 
value from the previous 
column/row



Fill the values using these rules:

1. If the letter on the current row 
and current column is the 
same, fill the current cell with 
the value of the diagonal 
element + 1

2. Else: take the maximum 
value from the previous 
column/row

3. Repeat steps 1 and 2 until 
the whole table is filled



The value in the very last cell is the length of the LCS



How do we find the actual sequence (not just the length)?



Save the arrows and backtrack



Remove all but diagonal arrows

This leaves us with CA, which is 
the LCS



How does this translate to code?

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X:

For every character Y[j] in Y:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])



Fill the first row and column with 0s

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X:

For every character Y[j] in Y:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])



Starting at (1, 1), go through every cell

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X[1:]:

For every character Y[j] in Y[1:]:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])



Check if the characters match

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X[1:]:

For every character Y[j] in Y[1:]:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])



No match

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X[1:]:

For every character Y[j] in Y[1:]:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])



Max of (0, 0) is 0

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X[1:]:

For every character Y[j] in Y[1:]:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])



What is the runtime complexity of this algorithm? 

1. Let X and Y be two given strings
2. Initialize a table LCS of size X.length * Y.length
3. Fill the first row and column with 0s
4. For every character X[i] in X:

For every character Y[j] in Y:
If X[i] = Y[j]:

LCS[i, j] = LCS[i-1, j-1] + 1
Point an arrow from LCS[i, j] to LCS[i-1, j-1]

Else: LCS[i, j] = max(LCS[i-1, j], LCS[i, j-1])
Point an arrow to max(LCS[i-1, j], LCS[i, j-1])

# Loop runs X.length times
# Loop runs Y.length times
# This takes constant time

Runtime is 
O(X.length*Y.length)


