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TDT4121 Introduction to Algorithms

Assignment 8
Practice Exam

Curriculum:
Lectures, Previous Assignments and their relevant chapters
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There will not be programming on the final exam, and hence, there is no programming part for
this assignment.



1. To solve the single source shortest paths problem on weighted directed graphs with integral
weights, one can first transform every directed edge (u, v) with weight w(u,v) = k > 1 into
a directed path (u, 1,23, ....2k —1,v) with length k, and then use BFS to find the shortest
paths. What are the advantages or disadvantages of this method? Discuss relationships with
algorithms studied in the class. (Is this always possible to solve any instance of the problem
using this method? Does it give a faster/slower algorithm? Why? Discuss various possible
scenarios.)

o

(a) Simplify the expression: O(n) + Q(n) + O(n)
(b) Sort the following terms in the increasing order of their asymptotic growth:
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Given a set of n positive integers whose sum is S < n for some small constant ¢ > 1,
describe an efficient algorithm to check if there exists a partition of the set into two subsets
such the sum of all the integers in each subset is the same. Analyze the running time of your
algorithm.
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(a) Suppose someone finds a polynomial time algorithm for factoring. What would be the
consequences for the relationship between P, NP and co-NP?

(b) Independently (i.e., without having a polynomial time algorithms for factoring), what
would be the consequences if someone showed a polynomial time reduction from
subsetsum to factoring?

&

What is a priority queue? What operations does it support? If we use a priority queue
to sort an input sequence of n elements, what is the runtime? (Express it in terms of the
complexities of the priority queune operations.)

2]

Given the string "SHESELLSSEASHELLSONSEASHORE”, encode it using a variable-length prefix
code such that the total length of the encoding is minimized (assuming that the alphabet
contains only the characters that appear in the string).

. Let A be an array consisting of n distinct integers. An inversion in A is a pair (i.j) such
i < jand Afi] > A[j]. Describe the algorithm (that is discussed in the class) to compute the
number of inversions in A. Show its runtime analysis briefly.

=
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There are n professors at NTNU, each having some joint research projects with m professors
(from various universities) in Denmark - each professor ean be part of multiple joint projects,
and each joint project has exactly one Norwegian and one Danish professor associated with it.
For a workshop discussing Norway-Denmark research cooperation, we would like to choose
the minimum number of professors from either of these countries, such that all the joint
projects are represented at the workshop (i.e., for each joint project, at least one of the
professors associated with it is chosen).

Is it possible to solve this problem in polynomial time? Justify your answer.

[ Note: You don’t need to design an algorithm. Once you identify the right problem, you
can lookup to check if there is an efficient algorithm to solve it. |
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}\\5 S 9 N W\U\—\’ U 4.4 Shortest Paths in a Graph
Some of the basic algorithms for graphs are based on greedy design principles.
6 re. e d A\ 9 Oﬁ- M 5 Here we apply a greedy algorithm to the problem of finding shortest paths, and
Y in the next section we look at the construction of minimum-cost spanning trees.



2. (a) Simplify the expression: O(n) + 2(n) + O(n)
(b) Sort the following terms in the increasing order of their asymptotic growth:
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3. Given a set of n positive integers whose sum is S < n° for some small constant ¢ > 1,
describe an efficient algorithm to check if there exists a partition of the set into two subsets
such the sum of all the integers in each subset is the same. Analyze the running time of your

algorithm.
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describe an efficient algorithm to check if there exists a partition of the set into two subsets
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Example: {8, 2, 4,1, 5 6.2¢ (n=%7)



3. Given a set of n positive integers whose sum is S < n° for some small constant ¢ > 1,
describe an efficient algorithm to check if there exists a partition of the set into two subsets
such the sum of all the integers in each subset is the same. Analyze the running time of your

algorithm.
EXOU’VVPIQ/: {_8_' ﬁ’ i/ __)_§_/ ,_é'ég

(8,1, 573 £z,4, 6,253

Sum: 4 SamL: 14
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4. (a) Suppose someone finds a polynomial time algorithm for factoring. What would be the
consequences for the relationship between P, NP and co-NP?

(b) Independently (i.e., without having a polynomial time algorithms for factoring), what
would be the consequences if someone showed a polynomial time reduction from

subsetsum to factoring?



4. (a) Suppose someone finds a polynomial time algorithm for factoring. What would be the
consequences for the relationship between P, NP and co-NP?

(b) Independently (i.e., without having a polynomial time algorithms for factoring), what
would be the consequences if someone showed a polynomial time reduction from
subsetsum to factoring?

Polynomial-Time Reduction (Assignment 7)

- A method for solving one problem using another
- Proves that the first problem is no more difficult than the second one

- Whenever an efficient algorithm exists for the second problem, one exists for the first problem as well
> X5 Y



5. What is a priority queue? What operations does it support? If we use a priority queue
to sort an input sequence of n elements, what is the runtime? (Express it in terms of the
complexities of the priority queue operations.)
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to sort an input sequence of n elements, what is the runtime? (Express it in terms of the
complexities of the priority queue operations.)

A <) 9“ N \' 1 25 A {V[o_re Complex Data Structure:
Priority Queues
. ' Our primary goal in this book was expressed at the outset of the chapter:
A\ﬂon -M/LWL f\ n a\y \S ‘ ‘S we seek algorithms that improve qualitatively on brute-force search, and in

general we use polynomial-time solvability as the concrete formulation of

thic Tuniralley acrhiavina A nalunamial.tima caliitinn tn A nantrivial nrahlam



6. Given the string "SHESELLSSEASHELLSONSEASHORE”, encode it using a variable-length prefix
code such that the total length of the encoding is minimized (assuming that the alphabet
contains only the characters that appear in the string).
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A&S 33 nmaen + q 4.8 Huffman Codes and Data Compression

In the Shortest-Path and Minimum Spanning Tree Problems, we’ve seen how

‘ greedy algorithms can be used to commit to certain parts of a solution (edges
Greedy Algonthms

in a graph, in these cases), based entirely on relatively short-sighted consid-



7. Let A be an array consisting of n distinct integers. An inversion in A is a pair (7, j) such
i < j and A[i] > A[j]. Describe the algorithm (that is discussed in the class) to compute the
number of inversions in A. Show its runtime analysis briefly.
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Agcsi\(jY\YVLQAWL 5
Divide & Conques

5.3 Counting Inversions

We’ve spent some time discussing approaches to solving a number of common
recurrences. The remainder of the chapter will illustrate the application of
divide-and-conquer to problems from a number of different domains; we will
use what we’ve seen in the previous sections to bound the running times



8. There are n professors at NTNU, each having some joint research projects with m professors
(from various universities) in Denmark - each professor can be part of multiple joint projects,
and each joint project has exactly one Norwegian and one Danish professor associated with it.
For a workshop discussing Norway-Denmark research cooperation, we would like to choose
the minimum number of professors from either of these countries, such that all the joint
projects are represented at the workshop (i.e., for each joint project, at least one of the
professors associated with it is chosen).

Is it possible to solve this problem in polynomial time? Justify your answer.

| Note: You don’t need to design an algorithm. Once you identify the right problem, you
can lookup to check if there is an efficient algorithm to solve it. ]
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ls +his problem. in P, or is it NP-completre?
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Chapter 1 - Introduction: Some Representative Problems

We start with an introduction of several representative problems, which introduce you to the world
of algorithms.

Goals 2
The student should be able to:

* Understand the Stable Matching Problem
* Understand how the Gale-Shapley algorithm solves the stable matching problem
= Understand some representative problems

Chapter 2 - Basics of Algorithm Analysis

Analyzing algorithms involves thinking about how their resource requirements—the amount of
time and space they use—will scale with increasing input size.

Goals |2
The student should be able to:

» Understand the different definitions of an efficient algorithm V

* Understand asymptotic notation and the asymptotic bounds O, £2, © as well as theirV
properties

* Understand how the stable matching problem is implemented using arrays and lists

* Have knowledge of common running-time bounds and some of the typical approaches tha\/
lead to them

+ Understand what a priority queue is and how heaps are used to implement them \/

Chapter 3 - Graphs

One of the most fundamental and expressive data structures in discrete mathematics
Goals [2
The student should be able to:

e Understand the basic definition of a graph ‘(
o The difference between a graph and a directed graph\/
e Know of examples of applications of graphs
e Understand what a tree is and their properties
Understand BFS - Breadth-First Search
Understand DFS - Depth-First Search
Understand how graphs are implemented
Understand Directed Acyclic Graphs and Topological Ordering

Chapter 4 - Divide and Conquer

Divide and conquer refers to a class of algorithmic techniques in which one breaks the input into
several parts, solves the problem in each part recursively, and then combines the solutions to these
subproblems into an overall solution. In many cases, it can be a simple and powerful method.

Goals @
The student should be able to:

» Understand the divide and conquer algorithm design method ‘{
* Understand mergesort

© Understand how its ideas are used to solve the Counting Inversions problem
» Understand the Finding the Closest Pair of Points problem
» Understand the Integer Multiplication problem
* Solve a recurrence by "unrolling” it
* Solve a recurrence by using substitution

Chapter 5 - Greedy Algorithms

An algorithm is greedy if it builds up a solution in small steps, choosing a decision at each step
myopically to optimize some underlying criterion. One can often design many different greedy
algorithms for the same problem, each one locally, incrementally optimizing some different
measure on its way to a solution

Goals [2
The student should be able to:

* Understand the different Interval Scheduling problems

+ Understand the Optimal Caching Problem

+ Understand the Shortest Path Problem and how Dijkstra’s algorithm solves it

+ Know what a Minimum Spanning Tree is and upderstand the Minimum Spanning Tree Problem
* Understand Prim’s and Kruskal’s algorithm \/

.

Understand Huffman and Huffman Codes

Chapter 6 - Dynamic Programming

The basic idea of Dynamic Programming is drawn from the intuition behind divide and conquer
and is essentially the opposite of the greedy strategy: one implicitly explores the space of all
possible solutions, by carefully decomposing things into a series of subproblems, and then building
up correct solutions to larger and larger subproblemns

Goals f2
The student should be able to:

* Understand the Dynamic Programming design method
© Understand when and how dynamic programming could be used
+ Understand how dynamic programming tables are used
+ Understand The Knapsack Problem
+ Understand how dynamic programming can be used to solve the Longest Common
Subsequence problem
* Understand how dynamic programming can be used to find Sequence Alignment
* Understand how dynamic programming can be used to find the Shortest path in a gmph\{
+ Find the asymptotic running time for Dynamic Programming Algorithms.

Chapter 7 - Network Flow

In graph theory, a flow network is a directed graph where each edge has a capacity and each edge
receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. While the
initial motivation for network flow problems comes from the issue of traffic in a network, we will
see that they have applications in a surprisingly diverse set of areas and lead to efficient
algorithms not just for Bipartite Matching, but for a host of other problems as well.

Goals [
The student should be able to:

* Understand the Maximum-Flow Problem

e Understand the Ford-Fulkerson Algerithm

¢ Understand and solve the problem of Minimum Cut in a graph.
* Use Network Flow to solve The Bipartite Matching Problem

* |dentify problems that can be solved using network flow.

Chapter 8 - NP and Computational Intractability

So far we've developed efficient algorithms for a wide range of problems and have even made
some progress on informally categorizing the problems that admit efficient solutions. But
although we've often paused to take note of other problems that we don’t see how to solve, we
haven't yet made any attempt to actually quantify or characterize the range of problems that
can’t be solved efficiently.

Goals [@
The student should be able to:

* Understand the difference between P, NP, NP-Complete and NP-Hard problems. J
* Prove whether a problem is NP or NP-Complete. V

* Understand the basis of Polynomial-Time Reduction \/

+ Understand the Satisfiability Problems

* Understand the Traveling Salesman Problem

* Understand the Hamiltonian Cycle Problem



Study guide suggestion

* Understand the fundamentals of each algorithm design paradigm
* Know the curriculum algorithms of each paradigm
* What problem do they solve?

* How do they solve the problem?
* Canyou run the algorithm by hand?
 What is their run-time (and why)?



