Assignment lecture W47

TDT4121

Task 1a

Task 1 Approximation

a) Why do we need approximation algorithms?

Task 1a: Solution

Solution:

Because with practical problems, if they happen to be NP-Hard or NP-complete, simply saying
that “there is no solution” isn’t a viable option, waiting for days or years for an algorithm to finish
isn’t exactly helpful either. We need some form of solution that solves the problem to a satisfactory

level.

Task 1b

b) Give an example of a situation/problem where an approximation solution is
needed, that is not covered in the book or lectures.

Task 1b: Example solution

* Traveling Salesman: approximate the solution by building a Minimum
Spanning Tree (MST), and generate a cycle that visits all nodes in T
using depth-first search.

Task 2a

You're acting as a consultant for Dofoora, a fictional delivery service in Trondheim. They use
couriers on bicycles to deliver food orders from a restaurant to customers placing their orders
online.

Here is a basic sort of problem they face. A number of orders n arrive, each with a total weight
wiy, Ws, ..., W,. At the restaurant, there is a set of couriers waiting, each of which can deliver a
limit of K units of weight (the company doesn’t want to get into trouble by a courier getting hurt
due to too much weight). A courier can carry several orders, subject to the weight restriction of
K. The goal is to minimize the number of couriers that are needed to deliver all the orders. This
problem is NP-complete (you don’t have to prove this). You can assume that K and each w; is an
integer and that the place of delivery does not matter.

A greedy algorithm you might use for this is the following. Start with a courier who starts picking
up orders 1,2, 3, ... until the total weight would exceed the limit K by picking up another order.
This courier is now “full” and is sent on its way to deliver the orders. In comes the next courier
which repeats the process.

Task 2a

You're acting as a consultant for Dofoora, a fictional delivery service in Trondheim. They use
couriers on bicycles to deliver food orders from a restaurant to customers placing their orders
online.

Here is a basic sort of problem they face. A number of orders n arrive, each with a total weight
wiy, Ws, ..., W,. At the restaurant, there is a set of couriers waiting, each of which can deliver a
limit of K units of weight (the company doesn’t want to get into trouble by a courier getting hurt
due to too much weight). A courier can carry several orders, subject to the weight restriction of
K. The goal is to minimize the number of couriers that are needed to deliver all the orders. This
problem is NP-complete (you don’t have to prove this). You can assume that K and each w; is an
integer and that the place of delivery does not matter.

A greedy algorithm you might use for this is the following. Start with a courier who starts picking
up orders 1,2, 3, ... until the total weight would exceed the limit K by picking up another order.
This courier is now “full” and is sent on its way to deliver the orders. In comes the next courier
which repeats the process.

Task 2a

You're acting as a consultant for Dofoora, a fictional delivery service in Trondheim. They use
couriers on bicycles to deliver food orders from a restaurant to customers placing their orders
online.

Here is a basic sort of problem they face. A number of orders n arrive, each with a total weight
wiy, Ws, ..., W,. At the restaurant, there is a set of couriers waiting, each of which can deliver a
limit of K units of weight (the company doesn’t want to get into trouble by a courier getting hurt
due to too much weight). A courier can carry several orders, subject to the weight restriction of
K. The goal is to minimize the number of couriers that are needed to deliver all the orders. This
problem is NP-complete (you don’t have to prove this). You can assume that K and each w; is an
integer and that the place of delivery does not matter.

A greedy algorithm you might use for this is the following. Start with a courier who starts picking
up orders 1,2, 3, ... until the total weight would exceed the limit K by picking up another order.
This courier is now “full” and is sent on its way to deliver the orders. In comes the next courier
which repeats the process.

a) Give an example of a set of orders with weights, and a value of K, where this
algorithm does not use the minimum amount of couriers.

Task 2a: Solution

Solution:

We let three orders {1, 2, 3} have weights {w;, w2, w3} = {1,2,1} and K = 2. The greedy algorithm
will use three couriers, since the first will pick up order 1, and not have room for order 2 so it heads
off. Two more couriers are then needed to pick up orders 2 and 3. However if the first courier had
waited until a second courier picked up ws, then the first courier could have picked up order 3 as

well.

Task 2b

b) Show, however, that the number of couriers used by this algorithm is within a
factor of 2 of the minimum possible number of couriers needed (the algorithm
will never use more than double of what an optimal solution would have), for any
set of weights and any value of K.

Task 2b: Solution

Solution:
Let W =). w;. Note that in any solution, each courier holds at most K units of weight, so W/K
is the lower bound of the number of couriers needed.

Suppose the number of couriers used by our greedy algorithm is an odd number m = 2¢g+ 1. Divide
the couriers used into consecutive groups of two, for a total of ¢ + 1 groups. In each group but
the last, the total weight of orders must be strictly greater than K (else, the second courier in the
group would not have any orders to deliver.) Thus, W > ¢K and so W/K > q. It follows by our
argument above that the optimum solution uses at least g + 1 couriers, which is within a factor of
20f m=2q+1.

Task 3a

~N O O W=

Task 3 Largest Subset of Integers

Suppose you are given a set of positive integers A = {a1,as,...,a,} and a positive integer B. A
subset S C A is called feasible if the sum of the numbers in S does not exceed B:

ZG,ZSB

a; €S

The sum of the numbers in S will be called the total sum of S. You would like to select a feasible
subset S of A whose total sum is as large as possible. Example. If A = {8,2,4} and B = 11, then
the optimal solution is the subset S = {8,2}.

a) Here is a proposed algorithm for this problem.

largest_subset_of (A):

s = {}
T =0
T ORI =100 SN T
G TS <=
S += {ai}
T += ai

This algorithm does not always give the optimal solution. Give an instance in which the total sum

of the set S returned by this algorithm is less than half the total sum of some other feasible subset
of A.

Task 3a: Solution

Solution:
Let A = {1,10} and B = 10, only a; will be chosen (S = {a;}) when the optimal solution is

S = {ag}.

Task 3b

b) Give a polynomial-time approximation algorithm for this problem with the
following guarantee: It returns a feasible set S C A whose total sum is at least
half as large as the maximum total sum of any feasible set S’ C A. Your algorithm
should have a running time of at most O(nlogn).

Task 3b:

© 0 N O U1l v W N =

[T N O = =Y
g P W NN = O

Solution

Solution:
This can be done in O(n) time.

We go through all the numbers in the set in order. If a number is exactly B we can return that
number as the optimal set, if the number is greater than B we skip it since it cannot be a part of
the optimal set. Otherwise we add the numbers to S until the total 7" exceeds B. This happens
when number a; is attempted to be added. We at this point have: ZL L a; > B, we also have that
S~ la; < B and a; < B. Thus one of the sets {a1,as, ...,a;_1} or {a;} must have size of at least
B/2, and at most B. We have then found a guaranteed subset of total sum at least B/2, and can
return the larger one of the two.

s = {}

T =20

oI = 1080 NI =
if ai ==

return {ai}
Sif A JIE AR e
continue
T T+ pq B
S += {ai}
T += ai
else:
ASTATENE > A} 8
return S
else:
return {ai}

Task 4a

Task 4 Grid Graph

Suppose you are given an n x n grid graph G as shown below (n = 5).

Associated with each node v is a weight w,,, which is a nonnegative integer. You may assume that
the weights of all nodes are distinct. Your goal is to choose an independent set S of nodes of the
grid, so that the sum of the weights of the nodes in S is as large as possible. (The sum of the
weights of the nodes in S will be called its total weight.)

Consider the following greedy algorithm for this problem:

1 The "heaviest-first" greedy algorithm:

2 Start with S equal to the empty set

3 while some node remains in G

4 Pick a node v of maximum weight

5 Add v to S

6 Delete v and its neighbors from G
7 Endwhile

8 return S

a) Let S be the independent set returned by the \heaviest — first” greedy algorithm,
and let T be any other independent set in G. Show that, for each node v € T,either
v € S, or there is a node v’ € S so that w, < w, and (v,v’) is an edge of G.

Task 4a: Solution

Solution:
If v ¢ S, it must have never been chosen by the greedy algorithm. This means that it was deleted

in some iteration by the selection of node v’. By the definition of the selection rule, this node v’
must be both a neighour of v, and have at least as much weight as v.

Task 4b

b) Show that the “heaviest — first” greedy algorithm returns an independent set of
total weight at least 1/4 times the maximum total weight of any independent set
in the grid graph G.

Task 4b: Solution

Solution:

Consider any other independent set T'. For each node v € T', we charge it to a node in S as follows.
If v € S, then we charge v to itself. Otherwise, by (a), v is a neighbor of some node v’ € S whose
weight is at least as large. We charge v to v'.

Now if v is charged to itself, then no other node is charged to v, since S and T are independent
sets. Otherwise, at most four neighboring nodes of no greater weight are charged to v. Either way,
the total weight of all nodes charged to v is at most 4w,. Since these charges account for the total
weight of T', it follows that the total weight of nodes in T is at most four times the total weight of
nodes in S, making the total weight of nodes in S at least i'wT

Task 5

Task 5 * Optional
a) Greedy Balance

Some friends of yours are working with a system that performs real-time scheduling of jobs on
multiple servers, and they’ve come to you for help in getting around an unfortunate piece of legacy
code that can’t be changed.

Here’s the situation. When a batch of jobs arrives, the system allocates them to servers using the
simple Greedy-Balance Algorithm from Section 11.1 in the book, which provides an approximation
to within a factor of 2. The algorithm is shown below:

Greedy-Balance:

Start with no jobs assigned

Ti=0

Ai={} for all machines Mi

oA = e n
Let Mi be a machine that achieves the minimum Tk
Assign job j to machine Mi
Set Ai += {j}
Set Ti += tj

EndFor

In the decade and a half since this part of the system was written, the hardware has gotten faster
to the point where, on the instances that the system needs to deal with, your friends find that it’s
generally possible to compute an optimal solution.

The difficulty is that the people in charge of the system’s internals won’t let them change the
portion of the software that implements the Greedy-Balance Algorithm so as to replace it with one
that finds the optimal solution. (Basically, this portion of the code has to interact with so many
other parts of the system that it’s not worth the risk of something going wrong if it’s replaced.)

After grumbling about this for a while, your friends come up with an alternate idea. Suppose they
could write a little piece of code that takes the description of the jobs, computes an optimal solution
(since they’re able to do this on the instances that arise in practice), and then feeds the jobs to
the Greedy-Balance Algorithm in an order that will cause it to allocate them optimally. In other
words, they’re hoping to be able to reorder the input in such a way that when Greedy-Balance
encounters the input in this order, it produces an optimal solution.

So their question to you is simply the following: Is this always possible? Their conjecture is:

For every instance of the load balancing problem from Section 11.1, there exists an order of the
jobs so that when Greedy-Balance processes the jobs in this order, it produces an assignment
of jobs to machines with the minimum possible makespan.

Decide whether you think this conjecture is true or false, and give either a proof or a
counterexample.

Task 5: Solution

Solution:
This is true.

Consider the assignment of jobs to machines in an arbitrary optimal solution, and an order of jobs
arbitrarily on each machine. We say that the base height of a job j is the total time requirement
of all jobs that precede it on its assigned machine.

We order all jobs by their base heights, and we feed them to the Greedy-Balance algorithm in this
order.

We claim the following by induction on r. After the first » jobs have been processed by Greedy-
Balance, the set of machine loads is the same as the set of machine loads if we consider the
assignment of these r jobs made by the optimal solution.

This is clearly true for r = 1, since one machine will have load t; and all others will have load 0.
Now suppose it is true up to some r, with loads 71, ..., T), and consider job r+ 1. Because we have
sorted jobs by their base height, job 7 + 1 comes from the machine that, in the optimal solution,
has load min;T;. By the definition of Greedy-Balance, this is the machine on which job r + 1 will
be placed, giving it a load of ¢,,; + min;T;. This completes the induction step.

Small summary of some relevant themes

Analysis of algorithms

* When we analyse we are mainly looking at Use of resources and
accuracy

* Accuracy is often proved by induction

* We often want to describe use of resources with asymptotic notation

Analysis of algorithms — Input and runtime

* Most often we are interested in the runtime as a function of the input
size. It can be either the number of elements in the input or the
number of bits the input needs to be represented.

* Sometimes it is not only the input size but also the characteristics of
the input that govern how long the algorithm needs. In this case, it is
often useful to talk about best- and worst case runtime

Analysis of algorithms — Input and runtime
example

ol - o= TR S P b \
def 1nsertionsort (A, len):
f

- e -

* Insertion type consists of two loops. The

.) for 3 in range(l,len):
outermost runs (n-1) times, the innermost S '
runs a maximum of (n-2) times. i= 4 -1
1le(i >= 0 and A[1i]
: : : [1+1] = A[1]
* The running time for all possible runs of i Sl

insertion sort will therefore be in O(n”2) A[i+1] = key

1] > key):

Analasys of algorithms — Recursive runtime

* In some cases, it is convenient to express the

runtime as a recursive expression
P T(|n/2]) + T([n/2]) + n

* In order to be able to use these in practice, we
want to translate it into an expression depending
only on n

* This can be done using the iteration method,
recurrence trees, or the substitution method

Recurrence trees

* Plot each recursive call as nodes

e Can be used as a guess for the substitution method, or as a solution
in itself if you are careful

* We look at the tree of T(n) = 3T(n/4) + cn"2

| /an\ E".. cn2
c (%)2 c (%)2 c (%)2 ----------------------- - = cn?

| / \ \
Lo n \2 n \2 n \2 n \2 n \2 n \2 n \2 n \2 n \2 . 3\2 .. 2
ls) elge) =) =wlE) elf) wlE) wiE) o) el = i (35) cn
Y TQ) TQ) TA) TA) TA) TA) TA) TA) TA) TA) «.r T(1) T(1) T(1) i ©(n'es3)

—
nlog43

T(n) = 3T(n/4) + cn*2 fou e

Proof by induction (substitution)

e Step 1: guess a solution
e Step 2 assume that it holds for all m < n:
e Step 3: insert and substitute

 Step 4: show that it holds for one base case
(arbitrarily chosen n)

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

0 P — il assumes n is a power of 2
T(n) =

2T(n/2) + n ifn>1

Pf. (by induction on n)
Base case: n=1.
Inductive hypothesis: T(n) = nlog, n.
Goal: show that T(2n) = 2n log, (2n).

eCurrence
T(2n) = 2T(n) +2n

inductive hypothesis —>

2nlogaon +2n
= 2n(log2(2n)-1) +2n

= 2nloga(2n). =

Graph traversal

What is a graph?
* Collection of nodes and edges

* Directed or undirected edges

* Can be represented by neighbor matrices or neighbor lists

Neighbor matrix

* Read from row to column
* Quickly look up a specific edge

* Less practical for traversing

d
K
1
1
0
0

(on

B P O O K

o = O O k=

- O = = O Qo

|Ol—‘Oo—>O|rD

Neighbor lists

* Each node has a list of neighbors

* No more information than necessary, good for
traversal

d % bl C]

* Checking if an edge exists requires a linear search b — [a,d,e]
C — [a, d]

d % :C, bl e]
- % d/ b]

Graph traversal

* We want to search through the nodes in a graph

e Common: We start in a node, and choose new nodes to traverse
among the neighbors

 Which nodes do we choose?

* How do we keep track of which nodes have already been traversed?

Breadth First (BFS)

* We give all the nodes a color, and start by coloring all the white ones.
* The nodes are organized into a queue.
* Nodes in the queue are grey

* Nodes that have been dequeued are black

* When all the neighbors have been added to the queue, we take the
first one out, and inspect the neighbors of the next one in the queue

Queue = [a] (we put in on the right, and
take out on the left)

Finished = @

 Queue = [b, c]

 Done ={a}

 Queue = [c, d]

 Done = {a, b}

e Queue = [d,e]

e Done={a, b, c, }

 Queue = [e, f]

e Done ={a, b, c, d}

 Queue = [f]

e Done=1{a, b, ¢, d, e}

* Queue =]

o Done = {a, b; C, d; e, f}

Run time and applications BFS

* O(V+E)
* Possible to save predecessors to keep the traversal tree

* Provides the shortest path from the start node to all other reachable
nodes

* Subalgorithm in other algorithms
 Edmonds-Karp
* Dijkstra

Greedy algorithms

* Many algorithms consist of making a series of choices. In some cases,
making the choice that looks best here and now will provide an optimal
solution. The problems this works for have the greed property

* Greedy algorithms are often easy to implement, but it can be challenging
to know for which Eroblems they give an optimal result. Manydproblems
that can be solved ﬁ dynamic programming can also be solved by a greedy

algorithm, but not a

* Important examples from the syllabus are activity selection, the continuous
knapsack problem and huffman coding

What does it take for a problem to be solved
ogreedily?

* If a problem is to be optimally solved by a greedy algorithm, it must
have an optimal substructure. This means that each optimal solution
consists of optimal partial solutions.

* We must be guaranteed that the greedy choice gives us an element
that belongs in an optimal solution; The greedy choice must choose
an element that another optimal algorithm would have also chosen.

This is the greedy-choice property
* .Each choice must result in only one new subproblem.

Minimal spanning trees

The problem

* We have an undirected graph with n
nodes, where each edge has a cost
associated with it

* This cost is given by a weight function
w(u, v), which gives all edges (u, v) a
numerical value

e Goal: Connect all the nodes with the
cheapest possible tree

Generic MIST

* Greedy solution: pick with the cheapest safe edge

* An edge is safe if it can be added to the solution
guantity such that:

* We still have a tree
* The result is a subset of a minimal spanning tree

* In the graph on the right, for example (b,d) is safe,
while (f, ¢) is not

Kruskal's algorithm

* Finds a safe edge by taking the lightest edge
connecting two trees in the forest from
already selected edges

» Keep track of the forest using the disjoint set

* When there are no more trees to connect, it
means that there is only one left spanning the
graph, and this is the minimal spanning tree

* O(E Ig V) (with min-heap)

Kruskal's algorithm

Kruskal's algorithm

Data structures

Queue

* |tis a data structure that is used to store data in a first-in-first-out
(FIFO) manner. The first element added (enqueued) to the queue is
the first element to be removed (dequeued)

empty queue enqueue enqueue dequeue

Stack

e A stack is a data structure that is used to store data in a last-in-first-
out (LIFO) manner. The last element added to the stack is the first
element to be removed.

empty push push push pop
stack

Linked List

* A linked list is a linear data structure that consists of a sequence of
nodes, each of which contains a piece of data and a reference to the
next node in the sequence.

* The first node in the sequence is called the head node, and the last
node is called the tail node

) data -
Head | - e :Tg
}_/ A Node
5 b - - 7 . - - 2 . 15

A Linked List

NULL |
/t’

Tree

* Atreeis a graph structure that contains one node as the root.

* This root then has an arbitrary number of children, which are also
nodes.

 The children of the root are called the branches.

Parent Node D

Child Node

Sub-tree Leaf Node

Dynamic programming

Requirements for DP

e Optimal substructure
* Overlapping subproblems

* How to do it in practice?

* Memoization
* Bottom-up problem solving

Divide-and-conquer

* Divide-and-conquer method for algorithm design:

* Divide: If the input size is too large to deal with in a
straightforward manner, divide the problem into two or
more disjoint subproblems

« Conquer: conquer recursively to solve the subproblems

 Combine: Take the solutions to the subproblems and
“‘merge” these solutions into a solution for the original
problem

Divide-and-conquer - Example

Merge-Sort (&, p,)

O For example, if p < r then

MergeSort g (ptr) /2
Merge-Sort (A, p, <

Merge-Sort (A, g+l, r)
Merge (A, p, d, I)

O The subproblems are
independent, all
different.

