
Assignment lecture W47
TDT4121



Task 1a



Task 1a: Solution



Task 1b



Task 1b: Example solution

• Traveling Salesman: approximate the solution by building a Minimum 
Spanning Tree (MST), and generate a cycle that visits all nodes in T 
using depth-first search. 



Task 2a



Task 2a



Task 2a



Task 2a: Solution



Task 2b



Task 2b: Solution



Task 3a



Task 3a: Solution



Task 3b



Task 3b: Solution



Task 4a



Task 4a: Solution



Task 4b



Task 4b: Solution



Task 5



Task 5: Solution



Small summary of some relevant themes



Analysis of algorithms

• When we analyse we are mainly looking at Use of resources and 
accuracy

• Accuracy is often proved by induction

• We often want to describe use of resources with asymptotic notation



Analysis of algorithms – Input and runtime

• Most often we are interested in the runtime as a function of the input 
size. It can be either the number of elements in the input or the 
number of bits the input needs to be represented.

• Sometimes it is not only the input size but also the characteristics of 
the input that govern how long the algorithm needs. In this case, it is 
often useful to talk about best- and worst case runtime



Analysis of algorithms – Input and runtime 
example
• Insertion type consists of two loops. The 

outermost runs (n-1) times, the innermost 
runs a maximum of (n-2) times.

• The running time for all possible runs of 
insertion sort will therefore be in O(n^2)



Analasys of algorithms – Recursive runtime

• In some cases, it is convenient to express the 
runtime as a recursive expression

• In order to be able to use these in practice, we 
want to translate it into an expression depending 
only on n

• This can be done using the iteration method, 
recurrence trees, or the substitution method



Recurrence trees

• Plot each recursive call as nodes

• Can be used as a guess for the substitution method, or as a solution 
in itself if you are careful

• We look at the tree of T(n) = 3T(n/4) + cn^2





Proof by induction (substitution)

• Step 1: guess a solution

• Step 2 assume that it holds for all m < n: 

• Step 3: insert and substitute

• Step 4: show that it holds for one base case 
(arbitrarily chosen n)





Graph traversal



What is a graph?

• Collection of nodes and edges

• Directed or undirected edges

• Can be represented by neighbor matrices or neighbor lists



Neighbor matrix

• Read from row to column

• Quickly look up a specific edge

• Less practical for traversing



Neighbor lists

• Each node has a list of neighbors

• No more information than necessary, good for 
traversal

• Checking if an edge exists requires a linear search



Graph traversal

• We want to search through the nodes in a graph

• Common: We start in a node, and choose new nodes to traverse 
among the neighbors

• Which nodes do we choose?

• How do we keep track of which nodes have already been traversed?



Breadth First (BFS)

• We give all the nodes a color, and start by coloring all the white ones.
• The nodes are organized into a queue.
• Nodes in the queue are grey
• Nodes that have been dequeued are black

• When all the neighbors have been added to the queue, we take the 
first one out, and inspect the neighbors of the next one in the queue



Queue = [a] (we put in on the right, and 
take out on the left)

Finished = Ø



• Queue = [b, c]

• Done = {a}



• Queue = [c, d]

• Done = {a, b}



• Queue = [d,e]

• Done = {a, b, c, }



• Queue = [e, f]

• Done = {a, b, c, d}



• Queue = [f]

• Done = {a, b, c, d, e}



• Queue = []

• Done = {a, b, c, d, e, f}



Run time and applications BFS

• O(V + E)
• Possible to save predecessors to keep the traversal tree
• Provides the shortest path from the start node to all other reachable 

nodes
• Subalgorithm in other algorithms
• Edmonds-Karp
• Dijkstra



Greedy algorithms



• Many algorithms consist of making a series of choices. In some cases, 
making the choice that looks best here and now will provide an optimal 
solution. The problems this works for have the greed property

• Greedy algorithms are often easy to implement, but it can be challenging 
to know for which problems they give an optimal result. Many problems 
that can be solved by dynamic programming can also be solved by a greedy 
algorithm, but not all.

• Important examples from the syllabus are activity selection, the continuous 
knapsack problem and huffman coding



What does it take for a problem to be solved 
greedily?
• If a problem is to be optimally solved by a greedy algorithm, it must 

have an optimal substructure. This means that each optimal solution 
consists of optimal partial solutions.

• We must be guaranteed that the greedy choice gives us an element 
that belongs in an optimal solution; The greedy choice must choose 
an element that another optimal algorithm would have also chosen. 
This is the greedy-choice property
• .Each choice must result in only one new subproblem.



Minimal spanning trees



The problem

• We have an undirected graph with n 
nodes, where each edge has a cost 
associated with it
• This cost is given by a weight function 

w(u, v), which gives all edges (u, v) a 
numerical value
• Goal: Connect all the nodes with the 

cheapest possible tree



Generic MST

• Greedy solution: pick with the cheapest safe edge

• An edge is safe if it can be added to the solution 
quantity such that:
• We still have a tree
• The result is a subset of a minimal spanning tree

• In the graph on the right, for example (b,d) is safe, 
while (f, c) is not



Kruskal's algorithm

• Finds a safe edge by taking the lightest edge 
connecting two trees in the forest from 
already selected edges
• Keep track of the forest using the disjoint set
• When there are no more trees to connect, it 

means that there is only one left spanning the 
graph, and this is the minimal spanning tree
• O(E lg V) (with min-heap)



Kruskal's algorithm



Kruskal's algorithm



Data structures



Queue

• It is a data structure that is used to store data in a first-in-first-out 
(FIFO) manner. The first element added (enqueued) to the queue is 
the first element to be removed (dequeued)



Stack

• A stack is a data structure that is used to store data in a last-in-first-
out (LIFO) manner. The last element added to the stack is the first 
element to be removed.



Linked List
• A linked list is a linear data structure that consists of a sequence of 

nodes, each of which contains a piece of data and a reference to the 
next node in the sequence.
• The first node in the sequence is called the head node, and the last 

node is called the tail node



Tree
• A tree is a graph structure that contains one node as the root. 
• This root then has an arbitrary number of children, which are also 

nodes. 
• The children of the root are called the branches.



Dynamic programming



Requirements for DP

• Optimal substructure
• Overlapping subproblems
• How to do it in practice?
• Memoization
• Bottom-up problem solving






